]> ocean-lang.org Git - ocean/blobdiff - csrc/oceani.mdc
Oceani - Cataract Creek version
[ocean] / csrc / oceani.mdc
index fd753ce5e0b0d43484fb6959e19cb30c7ee04aab..98430c21e93b1951f7ce7a80f26338c2ab7a82ca 100644 (file)
@@ -1,4 +1,4 @@
-# Ocean Interpreter - Jamison Creek version
+# Ocean Interpreter - Cataract Creek version
 
 Ocean is intended to be a compiled language, so this interpreter is
 not targeted at being the final product.  It is, rather, an intermediate
@@ -29,40 +29,55 @@ be.
 
 ## Current version
 
-This third version of the interpreter exists to test out some initial
-ideas relating to types.  Particularly it adds arrays (indexed from
-zero) and simple structures.  Basic control flow and variable scoping
-are already fairly well established, as are basic numerical and
-boolean operators.
-
-Some operators that have only recently been added, and so have not
-generated all that much experience yet are "and then" and "or else" as
-short-circuit Boolean operators, and the "if ... else" trinary
-operator which can select between two expressions based on a third
-(which appears syntactically in the middle).
-
-The "func" clause currently only allows a "main" function to be
-declared.  That will be extended when proper function support is added.
-
-An element that is present purely to make a usable language, and
-without any expectation that they will remain, is the "print" statement
-which performs simple output.
-
-The current scalar types are "number", "Boolean", and "string".
-Boolean will likely stay in its current form, the other two might, but
-could just as easily be changed.
+This fourth version of the interpreter showcases the latest iteration of
+the design for parsing indents and line breaks, provides a first cut of
+support for references and functions, and introduces some syntax for a
+array with run-time length - currently only used for "argv".
+
+Indents are now explicit elements of the grammar and we no longer
+require a colon before an indent.  The colon still appears on "if" and
+"while" statements and others but it now marks the end of the
+expression.  Where there is no expression, such as after "else", there
+is no colon - an indent can immediately follow the "else".
+
+References can refer objects of any type which has a name, and this
+explicitly excludes other pointers and arrays.  This makes a very clear
+difference between references and things that they refer to, which we
+will see makes the description of function parameters simpler.  As a
+structure can hold a reference it is still quite possible to have a
+reference to a reference, but there will be a structure which keeps the
+inner and outer clearly separate.
+
+Functions can receive by-value or by-reference parameters with by-ref being
+declared like references.  If a non-reference is passed to a reference
+parameter, it is passed by-reference.  Functions can return a single
+value, or can return a collections of values which acts like a structure.
+
+The only IO that is currently possible is that "input" can be received
+in the sense that command line arguments are available to `main()`, and
+"output" can be generated with the "print" statement.  It is quite
+possible that neither of these will remain in the final language.
+
+The current scalar types are "number", "Boolean", "string" and the new
+"reference".  Boolean will likely stay in its current form, "string" and
+"number" are still open to being revised.  Compound types are structures
+and arrays.
 
 ## Naming
 
 Versions of the interpreter which obviously do not support a complete
-language will be named after creeks and streams.  This one is Jamison
+language will be named after creeks and streams.  This one is Cataract
 Creek.
 
-Once we have something reasonably resembling a complete language, the
-names of rivers will be used.
+Once we have support for methods, the names of rivers will be used.
+With semantic analysis can start tracking changes to effective types
+typing within the code (e.g.  a ref becoming "known to not be NULL"),
+names of lakes will be used.
+
 Early versions of the compiler will be named after seas.  Major
 releases of the compiler will be named after oceans.  Hopefully I will
-be finished once I get to the Pacific Ocean release.
+be finished once I get to the Pacific Ocean release - otherwise I might
+need to use Lunar Maria.
 
 ## Outline
 
@@ -72,24 +87,33 @@ for validating the parsing.
 So the main requirements of the interpreter are:
 
 - Parse the program, possibly with tracing,
-- Analyse the parsed program to ensure consistency,
+- Analyse the parsed program to ensure consistency and deduce implicit
+  information.
 - Print the program,
 - Execute the "main" function in the program, if no parsing or
   consistency errors were found.
 
 This is all performed by a single C program extracted with
-`parsergen`.
+`parsergen`, using the `scanner` library.
+
+There will be two formats for printing the program: a default that uses
+indenting to show structure and an alternate that uses bracketing.  So a
+`--bracket` command line option is needed for that.
 
-There will be two formats for printing the program: a default and one
-that uses bracketing.  So a `--bracket` command line option is needed
-for that.  Normally the first code section found is used, however an
-alternate section can be requested so that a file (such as this one)
-can contain multiple programs.  This is effected with the `--section`
-option.
+The program appear in an "`mdcode`" file and is normally the first
+top-level code section found.  However an alternate section can
+be requested so that a file (such as this one) can contain multiple
+programs.  This is effected with the `--section` option.
 
 This code must be compiled with `-fplan9-extensions` so that anonymous
 structures can be used.
 
+The information gathered while parsing, and used while executing, is all
+stored in a single `parse_context` data structure.  And this exposition
+of the program progresses we will add various fields to this structure.
+It will be pass to many function, and all reduction code (called by the
+parsing engine) will have easy access to it.
+
 ###### File: oceani.mk
 
        myCFLAGS := -Wall -g -fplan9-extensions
@@ -110,11 +134,11 @@ structures can be used.
        ## macros
        struct parse_context;
        ## ast
+       ## ast late
        struct parse_context {
                struct token_config config;
                char *file_name;
                int parse_error;
-               struct exec *prog;
                ## parse context
        };
 
@@ -131,7 +155,7 @@ structures can be used.
        struct parse_context *c = config2context(config);
 
 ###### Parser: code
-
+       #define _GNU_SOURCE
        #include <unistd.h>
        #include <stdlib.h>
        #include <fcntl.h>
@@ -166,19 +190,25 @@ structures can be used.
                {NULL,        0, NULL, 0},
        };
        const char *options = "tpnbs";
+
+       /* pr_err() is used to report inconsistencies in the mdcode,
+        * particularly missing or duplicate section names.
+        */
+       static void pr_err(char *msg)                   // NOTEST
+       {
+               fprintf(stderr, "%s\n", msg);           // NOTEST
+       }                                               // NOTEST
+
        int main(int argc, char *argv[])
        {
                int fd;
                int len;
                char *file;
-               struct section *s, *ss;
+               struct section *s = NULL, *ss;
                char *section = NULL;
                struct parse_context context = {
                        .config = {
-                               .ignored = (1 << TK_mark),
-                               .number_chars = ".,_+- ",
-                               .word_start = "_",
-                               .word_cont = "_",
+                               ## scanner configuration
                        },
                };
                int doprint=0, dotrace=0, doexec=1, brackets=0;
@@ -207,7 +237,7 @@ structures can be used.
                context.file_name = argv[optind];
                len = lseek(fd, 0, 2);
                file = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
-               s = code_extract(file, file+len, NULL);
+               s = code_extract(file, file+len, pr_err);
                if (!s) {
                        fprintf(stderr, "oceani: could not find any code in %s\n",
                                argv[optind]);
@@ -226,46 +256,67 @@ structures can be used.
                        if (!ss) {
                                fprintf(stderr, "oceani: cannot find section %s\n",
                                        section);
-                               exit(1);
+                               goto cleanup;
                        }
                } else
                        ss = s;                         // NOTEST
+               if (!ss->code) {
+                       fprintf(stderr, "oceani: no code found in requested section\n");        // NOTEST
+                       goto cleanup;                   // NOTEST
+               }
+
                parse_oceani(ss->code, &context.config, dotrace ? stderr : NULL);
 
-               if (!context.prog) {
-                       fprintf(stderr, "oceani: no main function found.\n");
-                       context.parse_error = 1;
+               resolve_consts(&context);
+               prepare_types(&context);
+               if (!context.parse_error && !analyse_funcs(&context)) {
+                       fprintf(stderr, "oceani: type error in program - not running.\n");
+                       context.parse_error += 1;
                }
-               if (context.prog && doprint) {
+
+               if (doprint) {
                        ## print const decls
                        ## print type decls
-                       print_exec(context.prog, 0, brackets);
+                       ## print func decls
                }
-               if (context.prog && doexec && !context.parse_error) {
-                       if (!analyse_prog(context.prog, &context)) {
-                               fprintf(stderr, "oceani: type error in program - not running.\n");
-                               exit(1);
-                       }
-                       interp_prog(&context, context.prog, argc - optind, argv+optind);
-               }
-               free_exec(context.prog);
-
+               if (doexec && !context.parse_error)
+                       interp_main(&context, argc - optind, argv + optind);
+       cleanup:
                while (s) {
                        struct section *t = s->next;
                        code_free(s->code);
                        free(s);
                        s = t;
                }
-               ## free context vars
+               // FIXME parser should pop scope even on error
+               while (context.scope_depth > 0)
+                       scope_pop(&context);
+               ## free global vars
+               ## free const decls
                ## free context types
+               ## free context storage
                exit(context.parse_error ? 1 : 0);
        }
 
+Minimal configuration is needed for the scanner.  Unknown marks
+(punctuation) are not permitted so we ignore that.  A wide range of
+character are permitted in numbers, so that both period and comma can
+be used for the decimal marker, and both space and underscore can be
+used to separate groups of digits.  Only the defauls are allowed in
+identifiers with the exception that underscore can both start and
+continue an identifier.
+
+###### scanner configuration
+       .ignored = (1 << TK_mark),
+       .number_chars = ".,_+- ",
+       .word_start = "_",
+       .word_cont = "_",
+
 ### Analysis
 
-The four requirements of parse, analyse, print, interpret apply to
-each language element individually so that is how most of the code
-will be structured.
+The four requirements of parse, analyse, print, and interpret apply to
+each language element individually so that is how most of the code will
+be structured.
 
 Three of the four are fairly self explanatory.  The one that requires
 a little explanation is the analysis step.
@@ -273,17 +324,21 @@ a little explanation is the analysis step.
 The current language design does not require the types of variables to
 be declared, but they must still have a single type.  Different
 operations impose different requirements on the variables, for example
-addition requires both arguments to be numeric, and assignment
-requires the variable on the left to have the same type as the
-expression on the right.
+addition requires both arguments to be numeric, and assignment requires
+the variable on the left to have the same type as the expression on the
+right, or to be a reference to that type.  There are currently no type
+that are distinct but compatible, though that will change when more
+numeric types are introduced and again when interfaces are added.  Until
+then the type or a variable is determined either from the declaration of
+the initial assignment, but the code tries not to assume that.
 
 Analysis involves propagating these type requirements around and
-consequently setting the type of each variable.  If any requirements
-are violated (e.g. a string is compared with a number) or if a
-variable needs to have two different types, then an error is raised
-and the program will not run.
+consequently setting the type of each variable.  If any requirements are
+violated (e.g.  a string is compared with a number) or if a variable
+needs to have two different types, then an error is raised and the
+program will not run.
 
-If the same variable is declared in both branchs of an 'if/else', or
+If the same variable is declared in both branches of an 'if/else', or
 in all cases of a 'switch' then the multiple instances may be merged
 into just one variable if the variable is referenced after the
 conditional statement.  When this happens, the types must naturally be
@@ -291,26 +346,32 @@ consistent across all the branches.  When the variable is not used
 outside the if, the variables in the different branches are distinct
 and can be of different types.
 
-Undeclared names may only appear in "use" statements and "case" expressions.
-These names are given a type of "label" and a unique value.
-This allows them to fill the role of a name in an enumerated type, which
-is useful for testing the `switch` statement.
+Local variables, global constants, and functions are all named in the
+same namespace.  If a name is used before it is declared, it is assumed
+to be global, either a constant or a function.  It must be declare
+eventually, and this is checked in the analysis phase after all code has
+been parsed.
 
 As we will see, the condition part of a `while` statement can return
-either a Boolean or some other type.  This requires that the expected
-type that gets passed around comprises a type and a flag to indicate
-that `Tbool` is also permitted.
-
-As there are, as yet, no distinct types that are compatible, there
-isn't much subtlety in the analysis.  When we have distinct number
-types, this will become more interesting.
+either a Boolean or some other type, and as we have seen an asignment to
+a reference allows either a reference or the refered-to type to be
+given.  This requires that the expected type that gets passed around is
+accompanied by some flags, one to indicate that `Boolean` is also
+permitted and one to indicate that a reference to the given type is also
+permitted.
+
+Possibly the most interesting part of analysis at present involves some
+flags can be set during analysis of an expression, such as whether it
+can be used and a "lvalue" (i.e.  it can be assigned to) and whether it
+can be computed at compile-time, or whether it must wait until runtime.
+These will be introduced in due course.
 
 #### Error reporting
 
 When analysis discovers an inconsistency it needs to report an error;
 just refusing to run the code ensures that the error doesn't cascade,
 but by itself it isn't very useful.  A clear understanding of the sort
-of error message that are useful will help guide the process of
+of error messages that are useful will help guide the process of
 analysis.
 
 At a simplistic level, the only sort of error that type analysis can
@@ -324,40 +385,47 @@ particular type, by indicating the location where the type was set,
 whether by declaration or usage.
 
 Using a recursive-descent analysis we can easily detect a problem at
-multiple locations. In "`hello:= "there"; 4 + hello`" the addition
-will detect that one argument is not a number and the usage of `hello`
-will detect that a number was wanted, but not provided.  In this
-(early) version of the language, we will generate error reports at
-multiple locations, so the use of `hello` will report an error and
-explain were the value was set, and the addition will report an error
-and say why numbers are needed.  To be able to report locations for
-errors, each language element will need to record a file location
-(line and column) and each variable will need to record the language
-element where its type was set.  For now we will assume that each line
-of an error message indicates one location in the file, and up to 2
-types.  So we provide a `printf`-like function which takes a format, a
-location (a `struct exec` which has not yet been introduced), and 2
-types. "`%1`" reports the first type, "`%2`" reports the second.  We
-will need a function to print the location, once we know how that is
-stored. e As will be explained later, there are sometimes extra rules for
-type matching and they might affect error messages, we need to pass those
-in too.
+multiple locations.  In "`hello := "there"; print 4 + hello`" the
+addition will detect that one argument is not a number and the usage of
+`hello` will detect that a number was wanted, but not provided.  We
+could generate an error at either location, or even at both.  In this
+version of the language, we pass down the expected type, and the handler
+for variables notices that `hello` is not the correct type and reports
+an error.  So errors are large reported at the leaves.
+
+To be able to report locations for errors, each language element will
+need to record a file location (line and column) and each variable will
+need to record the language element where its type was set.  For now we
+will assume that each line of an error message indicates one location in
+the file, and up to 2 types.  So we provide a `printf`-like function
+which takes a format, a location (a `struct exec` which has not yet been
+introduced), and 2 types.  "`%1`" reports the first type, "`%2`" reports
+the second.  We will need a function to print the location, once we know
+how that is stored.  As explained earlier, there are sometimes extra
+rules for type matching (to accept Bool or reference) and they might
+affect error messages, we need to pass those in too.
 
 As well as type errors, we sometimes need to report problems with
-tokens, which might be unexpected or might name a type that has not
-been defined.  For these we have `tok_err()` which reports an error
-with a given token.  Each of the error functions sets the flag in the
-context so indicate that parsing failed.
+tokens, which might be unexpected or badly formatted, or might be a name
+that has been defined twice or not at all.  For these we have
+`tok_err()` which reports an error with a given token.  Each of the
+error functions updates a count of error in the context to indicate that
+parsing failed.  We use a counter so it is easy to determine if a new
+error occurred during a particular stage of analysis.
 
 ###### forward decls
 
        static void fput_loc(struct exec *loc, FILE *f);
+       static void type_err(struct parse_context *c,
+                            char *fmt, struct exec *loc,
+                            struct type *t1, enum val_rules rules, struct type *t2);
+       static void tok_err(struct parse_context *c, char *fmt, struct token *t);
 
 ###### core functions
 
        static void type_err(struct parse_context *c,
                             char *fmt, struct exec *loc,
-                            struct type *t1, int rules, struct type *t2)
+                            struct type *t1, enum val_rules rules, struct type *t2)
        {
                fprintf(stderr, "%s:", c->file_name);
                fput_loc(loc, stderr);
@@ -380,409 +448,1088 @@ context so indicate that parsing failed.
                        }
                }
                fputs("\n", stderr);
-               c->parse_error = 1;
+               c->parse_error += 1;
        }
 
        static void tok_err(struct parse_context *c, char *fmt, struct token *t)
        {
                fprintf(stderr, "%s:%d:%d: %s: %.*s\n", c->file_name, t->line, t->col, fmt,
                        t->txt.len, t->txt.txt);
-               c->parse_error = 1;
+               c->parse_error += 1;
        }
 
-## Entities: declared and predeclared.
+## Entities: values, types, variables, and code.
 
-There are various "things" that the language and/or the interpreter
-needs to know about to parse and execute a program.  These include
-types, variables, values, and executable code.  These are all lumped
-together under the term "entities" (calling them "objects" would be
-confusing) and introduced here.  The following section will present the
-different specific code elements which comprise or manipulate these
-various entities.
+It could be said that the focus of a language is values, which are
+organised into types, stored in variables, and manipulated with
+executable code.  This section introduces each of these entities and
+provide a foundation for them.  Once they are all in place, the next
+section will flesh them out, particular the mode complex executable code
+entities.
 
-### Types
+### Executables
 
-Values come in a wide range of types, with more likely to be added.
-Each type needs to be able to print its own values (for convenience at
-least) as well as to compare two values, at least for equality and
-possibly for order.  For now, values might need to be duplicated and
-freed, though eventually such manipulations will be better integrated
-into the language.
-
-Rather than requiring every numeric type to support all numeric
-operations (add, multiple, etc), we allow types to be able to present
-as one of a few standard types: integer, float, and fraction.  The
-existence of these conversion functions eventually enable types to
-determine if they are compatible with other types, though such types
-have not yet been implemented.
+Executables can be lots of different things.  In many cases an
+executable is just an operation combined with one or two other
+executables.  This allows for expressions and lists etc.  Other times an
+executable is something quite specific like a constant or variable name.
+So we define a `struct exec` to be a general executable with a type, and
+a `struct binodes` which is a subclass of `exec`, forms a node in a
+binary tree, and holds an operation.  The simplest operation is "List"
+which can be used to combine several execs together.
 
-Named type are stored in a simple linked list.  Objects of each type are
-"values" which are often passed around by value.
+When parsing a list of binodes, whether with the `List` operator or some
+other, it is most convenient to append to the end, so a list is a list
+and a thin.  When using the list it is more convenient to consider
+a list to be a thing and a list.  So we need a function to re-order
+a list.  `reorder_bilist` serves this purpose.
 
-###### ast
+There will be other subclasses, and to access these we need to be able
+to `cast` the `exec` into the various other types.  The first field in
+any `struct exec` is the type from the `exec_types` enum.
 
-       struct value {
-               union {
-                       char ptr[1];
-                       ## value union fields
-               };
-       };
+###### macros
+       #define cast(structname, pointer) ({            \
+               const typeof( ((struct structname *)0)->type) *__mptr =         \
+                                                        &(pointer)->type;      \
+               if (__mptr && *__mptr != X##structname) abort();                \
+               (struct structname *)( (char *)__mptr);})
 
-       struct type {
-               struct text name;
-               struct type *next;
-               int size, align;
-               void (*init)(struct type *type, struct value *val);
-               void (*prepare_type)(struct parse_context *c, struct type *type, int parse_time);
-               void (*print)(struct type *type, struct value *val);
-               void (*print_type)(struct type *type, FILE *f);
-               int (*cmp_order)(struct type *t1, struct type *t2,
-                                struct value *v1, struct value *v2);
-               int (*cmp_eq)(struct type *t1, struct type *t2,
-                             struct value *v1, struct value *v2);
-               void (*dup)(struct type *type, struct value *vold, struct value *vnew);
-               void (*free)(struct type *type, struct value *val);
-               void (*free_type)(struct type *t);
-               long long (*to_int)(struct value *v);
-               double (*to_float)(struct value *v);
-               int (*to_mpq)(mpq_t *q, struct value *v);
-               ## type functions
-               union {
-                       ## type union fields
-               };
-       };
+       #define new(structname) ({                                              \
+               struct structname *__ptr = ((struct structname *)calloc(        \
+                                               1,sizeof(struct structname)));  \
+               __ptr->type = X##structname;                                    \
+               __ptr->line = -1; __ptr->column = -1;                           \
+               __ptr;})
 
-###### parse context
+       #define new_pos(structname, token) ({                                   \
+               struct structname *__ptr = ((struct structname *)calloc(        \
+                                               1,sizeof(struct structname)));  \
+               __ptr->type = X##structname;                                    \
+               __ptr->line = token.line; __ptr->column = token.col;            \
+               __ptr;})
 
-       struct type *typelist;
+###### ast
+       enum exec_types {
+               Xbinode,
+               ## exec type
+       };
+       struct exec {
+               enum exec_types type;
+               int line, column;
+               ## exec fields
+       };
+       struct binode {
+               struct exec;
+               enum Btype {
+                       List,
+                       ## Binode types
+               } op;
+               struct exec *left, *right;
+       };
 
 ###### ast functions
 
-       static struct type *find_type(struct parse_context *c, struct text s)
+       static int __fput_loc(struct exec *loc, FILE *f)
        {
-               struct type *l = c->typelist;
-
-               while (l &&
-                      text_cmp(l->name, s) != 0)
-                               l = l->next;
-               return l;
+               if (!loc)
+                       return 0;
+               if (loc->line >= 0) {
+                       fprintf(f, "%d:%d: ", loc->line, loc->column);
+                       return 1;
+               }
+               if (loc->type == Xbinode)
+                       return __fput_loc(cast(binode,loc)->left, f) ||
+                              __fput_loc(cast(binode,loc)->right, f); // NOTEST
+               return 0;                                              // NOTEST
        }
-
-       static struct type *add_type(struct parse_context *c, struct text s,
-                                    struct type *proto)
+       static void fput_loc(struct exec *loc, FILE *f)
        {
-               struct type *n;
-
-               n = calloc(1, sizeof(*n));
-               *n = *proto;
-               n->name = s;
-               n->next = c->typelist;
-               c->typelist = n;
-               return n;
+               if (!__fput_loc(loc, f))
+                       fprintf(f, "??:??: ");                  // NOTEST
        }
 
-       static void free_type(struct type *t)
+       // Move all nodes from 'b' to 'rv', reversing their order.
+       // In 'b' 'left' is a list, and 'right' is the last node.
+       // In 'rv', left' is the first node and 'right' is a list.
+       static struct binode *reorder_bilist(struct binode *b)
        {
-               /* The type is always a reference to something in the
-                * context, so we don't need to free anything.
-                */
-       }
+               struct binode *rv = NULL;
 
-       static void free_value(struct type *type, struct value *v)
-       {
-               if (type && v)
-                       type->free(type, v);
+               while (b) {
+                       struct exec *t = b->right;
+                       b->right = rv;
+                       rv = b;
+                       if (b->left)
+                               b = cast(binode, b->left);
+                       else
+                               b = NULL;
+                       rv->left = t;
+               }
+               return rv;
        }
 
-       static void type_print(struct type *type, FILE *f)
+Each different type of `exec` node needs a number of functions defined,
+a bit like methods.  We must be able to free it, print it, analyse it
+and execute it.  Once we have specific `exec` types we will need to
+parse them too.  Let's take this a bit more slowly.
+
+#### Freeing
+
+The parser generator requires a `free_foo` function for each struct
+that stores attributes and they will often be `exec`s and subtypes
+there-of.  So we need `free_exec` which can handle all the subtypes,
+and we need `free_binode`.
+
+###### ast functions
+
+       static void free_binode(struct binode *b)
        {
-               if (!type)
-                       fputs("*unknown*type*", f);     // NOTEST
-               else if (type->name.len)
-                       fprintf(f, "%.*s", type->name.len, type->name.txt);
-               else if (type->print_type)
-                       type->print_type(type, f);
-               else
-                       fputs("*invalid*type*", f);     // NOTEST
+               if (!b)
+                       return;
+               free_exec(b->left);
+               free_exec(b->right);
+               free(b);
        }
 
-       static void val_init(struct type *type, struct value *val)
+###### core functions
+       static void free_exec(struct exec *e)
        {
-               if (type && type->init)
-                       type->init(type, val);
+               if (!e)
+                       return;
+               switch(e->type) {
+                       ## free exec cases
+               }
        }
 
-       static void dup_value(struct type *type,
-                             struct value *vold, struct value *vnew)
+###### forward decls
+
+       static void free_exec(struct exec *e);
+
+###### free exec cases
+       case Xbinode: free_binode(cast(binode, e)); break;
+
+#### Printing
+
+Printing an `exec` requires that we know the current indent level for
+printing line-oriented components.  As will become clear later, we
+also want to know what sort of bracketing to use.  It will also be used
+to sometime print comments after an exec to explain some of the results
+of analysis.
+
+###### ast functions
+
+       static void do_indent(int i, char *str)
        {
-               if (type && type->dup)
-                       type->dup(type, vold, vnew);
+               while (i-- > 0)
+                       printf("    ");
+               printf("%s", str);
        }
 
-       static int value_cmp(struct type *tl, struct type *tr,
-                            struct value *left, struct value *right)
+###### core functions
+       static void print_binode(struct binode *b, int indent, int bracket)
        {
-               if (tl && tl->cmp_order)
-                       return tl->cmp_order(tl, tr, left, right);
-               if (tl && tl->cmp_eq)
-                       return tl->cmp_eq(tl, tr, left, right);
-               return -1;                              // NOTEST
+               struct binode *b2;
+               switch(b->op) {
+               case List: abort(); // must be handled by parent NOTEST
+               ## print binode cases
+               }
        }
 
-       static void print_value(struct type *type, struct value *v)
+       static void print_exec(struct exec *e, int indent, int bracket)
        {
-               if (type && type->print)
-                       type->print(type, v);
-               else
-                       printf("*Unknown*");            // NOTEST
+               if (!e)
+                       return; // NOTEST
+               switch (e->type) {
+               case Xbinode:
+                       print_binode(cast(binode, e), indent, bracket); break;
+               ## print exec cases
+               }
+               ## print exec extras
        }
 
 ###### forward decls
 
-       static void free_value(struct type *type, struct value *v);
-       static int type_compat(struct type *require, struct type *have, int rules);
-       static void type_print(struct type *type, FILE *f);
-       static void val_init(struct type *type, struct value *v);
-       static void dup_value(struct type *type,
-                             struct value *vold, struct value *vnew);
-       static int value_cmp(struct type *tl, struct type *tr,
-                            struct value *left, struct value *right);
-       static void print_value(struct type *type, struct value *v);
+       static void print_exec(struct exec *e, int indent, int bracket);
 
-###### free context types
+#### Analysing
 
-       while (context.typelist) {
-               struct type *t = context.typelist;
+As discussed, analysis involves propagating type requirements around the
+program and looking for errors.
 
-               context.typelist = t->next;
-               if (t->free_type)
-                       t->free_type(t);
-               free(t);
-       }
+So `propagate_types` is passed an expected type (being a `struct type`
+pointer together with some `val_rules` flags) that the `exec` is
+expected to return, and returns the type that it does return, either of
+which can be `NULL` signifying "unknown".  A `prop_err` flag set is
+passed by reference.  It has `Efail` set when an error is found, and
+`Eretry` when the type for some element is set via propagation.  If
+any expression cannot be evaluated a compile time, `Eruntime` is set.
+If the expression can be copied, `Emaycopy` is set.
 
-Type can be specified for local variables, for fields in a structure,
-for formal parameters to functions, and possibly elsewhere.  Different
-rules may apply in different contexts.  As a minimum, a named type may
-always be used.  Currently the type of a formal parameter can be
-different from types in other contexts, so we have a separate grammar
-symbol for those.
+If `Erval` is set, then the value cannot be assigned to because it is
+a temporary result.  If `Erval` is clear but `Econst` is set, then
+the value can only be assigned once, when the variable is declared.
 
-###### Grammar
+Various propagate cases can pass "perr_local" to analyse components of
+an expression which do not affect the result type of the whole
+expression.
 
-       $*type
-       Type -> IDENTIFIER ${
-               $0 = find_type(c, $1.txt);
-               if (!$0) {
-                       tok_err(c,
-                               "error: undefined type", &$1);
+###### ast
 
-                       $0 = Tnone;
-               }
-       }$
-       ## type grammar
+       enum val_rules {Rboolok = 1<<0, Rrefok = 1<<1,};
+       enum prop_err {Efail = 1<<0, Eretry = 1<<1, Eruntime = 1<<2,
+                      Emaycopy = 1<<3, Erval = 1<<4, Econst = 1<<5};
 
-       FormalType -> Type ${ $0 = $<1; }$
-       ## formal type grammar
+###### forward decls
+       static struct type *propagate_types(
+               struct exec *prog, struct parse_context *c, enum prop_err *perr,
+               struct type *type, enum val_rules rules);
+###### core functions
 
-#### Base Types
+       static struct type *__propagate_types(
+               struct exec *prog, struct parse_context *c,
+               enum prop_err *perr, enum prop_err *perr_local,
+               struct type *type, enum val_rules rules)
+       {
+               struct type *t;
 
-Values of the base types can be numbers, which we represent as
-multi-precision fractions, strings, Booleans and labels.  When
-analysing the program we also need to allow for places where no value
-is meaningful (type `Tnone`) and where we don't know what type to
-expect yet (type is `NULL`).
+               if (!prog)
+                       return Tnone;
 
-Values are never shared, they are always copied when used, and freed
-when no longer needed.
+               switch (prog->type) {
+               case Xbinode:
+               {
+                       struct binode *b = cast(binode, prog);
+                       switch (b->op) {
+                       case List: abort(); // NOTEST
+                       ## propagate binode cases
+                       }
+                       break;
+               }
+               ## propagate exec cases
+               }
+               return Tnone;
+       }
 
-When propagating type information around the program, we need to
-determine if two types are compatible, where type `NULL` is compatible
-with anything.  There are two special cases with type compatibility,
-both related to the Conditional Statement which will be described
-later.  In some cases a Boolean can be accepted as well as some other
-primary type, and in others any type is acceptable except a label (`Vlabel`).
-A separate function encoding these cases will simplify some code later.
+       static struct type *propagate_types(struct exec *prog,
+                                           struct parse_context *c,
+                                           enum prop_err *perr,
+                                           struct type *type,
+                                           enum val_rules rules)
+       {
+               int pre_err = c->parse_error;
+               enum prop_err perr_local = 0;
+               struct type *ret = __propagate_types(prog, c, perr, &perr_local,
+                                                    type, rules);
+
+               *perr |= perr_local & (Efail | Eretry);
+               if (c->parse_error > pre_err)
+                       *perr |= Efail;
+               return ret;
+       }
 
-###### type functions
+#### Interpreting
 
-       int (*compat)(struct type *this, struct type *other);
+Interpreting an `exec` primarily requires the `exec` and the variable
+storage information stored in the parse state.  Apart from modifying
+those variables, and possibly performing other side-effects, an exec can
+return a value.  `struct value` is used for passing around small values
+and a pointer to that structure can be used for larger values.
 
-###### ast functions
+Specifically, each `exec` case can return a value combined with a type
+in `struct lrval`.  The type may be `Tnone` but must be non-NULL.  Some
+`exec`s will return the location of a value, which can be updated, in
+`lval`.  Others will set `lval` to NULL indicating that there is a value
+of appropriate type in `rval`.
 
-       static int type_compat(struct type *require, struct type *have, int rules)
-       {
-               if ((rules & Rboolok) && have == Tbool)
-                       return 1;
-               if ((rules & Rnolabel) && have == Tlabel)
-                       return 0;
-               if (!require || !have)
-                       return 1;
+Callers call either `interp_exec()` if they just want the value, or
+`linterp_exec()~ if they need an lvalue.  `dinterp_exec()` is called
+when there is a destination for the value to go.  This is used for
+function calls which return a value that is not an lvalue, but is too
+large to store in `struct value`.
 
-               if (require->compat)
-                       return require->compat(require, have);
+Each of these call `_interp_exec()` which calls the appropriate exec case.
 
-               return require == have;
-       }
+###### forward decls
+       static struct value interp_exec(struct parse_context *c, struct exec *e,
+                                       struct type **typeret);
+###### ast
 
-###### includes
-       #include <gmp.h>
-       #include "parse_string.h"
-       #include "parse_number.h"
+       struct value {
+               union {
+                       char ptr[1];
+                       ## value union fields
+               };
+       };
 
-###### libs
-       myLDLIBS := libnumber.o libstring.o -lgmp
-       LDLIBS := $(filter-out $(myLDLIBS),$(LDLIBS)) $(myLDLIBS)
+       struct lrval {
+               struct type *type;
+               struct value rval, *lval;
+       };
 
-###### type union fields
-       enum vtype {Vnone, Vstr, Vnum, Vbool, Vlabel} vtype;
+###### core functions
 
-###### value union fields
-       struct text str;
-       mpq_t num;
-       unsigned char bool;
-       void *label;
+       /* If dest is passed, dtype must give the expected type, and
+        * result can go there, in which case type is returned as NULL.
+        */
+       static struct lrval _interp_exec(struct parse_context *c, struct exec *e,
+                                        struct value *dest, struct type *dtype);
 
-###### ast functions
-       static void _free_value(struct type *type, struct value *v)
+       static struct value interp_exec(struct parse_context *c, struct exec *e,
+                                       struct type **typeret)
        {
-               if (!v)
-                       return;         // NOTEST
-               switch (type->vtype) {
-               case Vnone: break;
-               case Vstr: free(v->str.txt); break;
-               case Vnum: mpq_clear(v->num); break;
-               case Vlabel:
-               case Vbool: break;
-               }
-       }
+               struct lrval ret = _interp_exec(c, e, NULL, NULL);
 
-###### value functions
+               if (!ret.type) abort();
+               if (typeret)
+                       *typeret = ret.type;
+               if (ret.lval)
+                       dup_value(ret.type, ret.lval, &ret.rval);
+               return ret.rval;
+       }
 
-       static void _val_init(struct type *type, struct value *val)
+       static struct value *linterp_exec(struct parse_context *c, struct exec *e,
+                                         struct type **typeret)
        {
-               switch(type->vtype) {
-               case Vnone:             // NOTEST
-                       break;          // NOTEST
-               case Vnum:
-                       mpq_init(val->num); break;
-               case Vstr:
-                       val->str.txt = malloc(1);
-                       val->str.len = 0;
-                       break;
-               case Vbool:
-                       val->bool = 0;
-                       break;
-               case Vlabel:
-                       val->label = NULL;
-                       break;
-               }
+               struct lrval ret = _interp_exec(c, e, NULL, NULL);
+
+               if (!ret.type) abort();
+               if (ret.lval)
+                       *typeret = ret.type;
+               else
+                       free_value(ret.type, &ret.rval);
+               return ret.lval;
        }
 
-       static void _dup_value(struct type *type, 
-                              struct value *vold, struct value *vnew)
+       /* dinterp_exec is used when the destination type is certain and
+        * the value has a place to go.
+        */
+       static void dinterp_exec(struct parse_context *c, struct exec *e,
+                                struct value *dest, struct type *dtype,
+                                int need_free)
        {
-               switch (type->vtype) {
-               case Vnone:             // NOTEST
-                       break;          // NOTEST
-               case Vlabel:
-                       vnew->label = vold->label;
-                       break;
-               case Vbool:
-                       vnew->bool = vold->bool;
-                       break;
-               case Vnum:
-                       mpq_init(vnew->num);
-                       mpq_set(vnew->num, vold->num);
-                       break;
-               case Vstr:
-                       vnew->str.len = vold->str.len;
-                       vnew->str.txt = malloc(vnew->str.len);
-                       memcpy(vnew->str.txt, vold->str.txt, vnew->str.len);
-                       break;
-               }
+               struct lrval ret = _interp_exec(c, e, dest, dtype);
+               if (!ret.type)
+                       return;
+               if (need_free)
+                       free_value(dtype, dest);
+               if (ret.lval)
+                       dup_value(dtype, ret.lval, dest);
+               else
+                       memcpy(dest, &ret.rval, dtype->size);
        }
 
-       static int _value_cmp(struct type *tl, struct type *tr,
-                             struct value *left, struct value *right)
+       static struct lrval _interp_exec(struct parse_context *c, struct exec *e,
+                                        struct value *dest, struct type *dtype)
        {
-               int cmp;
-               if (tl != tr)
-                       return tl - tr; // NOTEST
-               switch (tl->vtype) {
-               case Vlabel: cmp = left->label == right->label ? 0 : 1; break;
-               case Vnum: cmp = mpq_cmp(left->num, right->num); break;
-               case Vstr: cmp = text_cmp(left->str, right->str); break;
-               case Vbool: cmp = left->bool - right->bool; break;
-               case Vnone: cmp = 0;                    // NOTEST
+               /* If the result is copied to dest, ret.type is set to NULL */
+               struct lrval ret;
+               struct value rv = {}, *lrv = NULL;
+               struct type *rvtype;
+
+               rvtype = ret.type = Tnone;
+               if (!e) {
+                       ret.lval = lrv;
+                       ret.rval = rv;
+                       return ret;
                }
-               return cmp;
-       }
 
-       static void _print_value(struct type *type, struct value *v)
-       {
-               switch (type->vtype) {
-               case Vnone:                             // NOTEST
-                       printf("*no-value*"); break;    // NOTEST
-               case Vlabel:                            // NOTEST
-                       printf("*label-%p*", v->label); break; // NOTEST
-               case Vstr:
-                       printf("%.*s", v->str.len, v->str.txt); break;
-               case Vbool:
-                       printf("%s", v->bool ? "True":"False"); break;
-               case Vnum:
-                       {
-                       mpf_t fl;
-                       mpf_init2(fl, 20);
-                       mpf_set_q(fl, v->num);
-                       gmp_printf("%Fg", fl);
-                       mpf_clear(fl);
-                       break;
+               switch(e->type) {
+               case Xbinode:
+               {
+                       struct binode *b = cast(binode, e);
+                       struct value left, right, *lleft;
+                       struct type *ltype, *rtype;
+                       ltype = rtype = Tnone;
+                       switch (b->op) {
+                       case List: abort();     // NOTEST
+                       ## interp binode cases
                        }
+                       free_value(ltype, &left);
+                       free_value(rtype, &right);
+                       break;
+               }
+               ## interp exec cases
                }
+               if (rvtype) {
+                       ret.lval = lrv;
+                       ret.rval = rv;
+                       ret.type = rvtype;
+               }
+               ## interp exec cleanup
+               return ret;
        }
 
-       static void _free_value(struct type *type, struct value *v);
+### Types
 
-       static struct type base_prototype = {
-               .init = _val_init,
-               .print = _print_value,
-               .cmp_order = _value_cmp,
-               .cmp_eq = _value_cmp,
-               .dup = _dup_value,
-               .free = _free_value,
+Values come in a wide range of types, with more likely to be added.
+Each type needs to be able to print its own values (for convenience at
+least, and for printing manifest constants when generating code) as well
+as to compare two values, at least for equality and possibly for order.
+For now, values might need to be duplicated and freed, though eventually
+such manipulations will be better integrated into the language.
+
+Named type are stored in a simple linked list.  Objects of each type are
+"values" which are often passed around by value.
+
+There are both explicitly named types, and anonymous types.  Anonymous
+cannot be accessed by name, but are used internally and have a name
+which might be reported in error messages.
+
+The `prepare_type()` interface is called on a type in two circumstances.
+After the program has been parsed but before anything in executed it is
+called with `parse_time` set to one.  This can be used for processing
+information that was not fully available when the type description was
+parsed, such as types of fields in structures.  It is then called again
+at runtime when a variable declaration is processed.  This allows the
+details of a type to depend on runtime context, such as the size of an
+array being determined by a constant.  In this second case the
+`parse_time` parameter is set to zero.
+
+###### ast late
+       struct type {
+               struct text name;
+               struct type *next;
+               struct token first_use;
+               int size, align;
+               int anon;
+               void (*init)(struct type *type, struct value *val);
+               int (*prepare_type)(struct parse_context *c, struct type *type,
+                    int parse_time);
+               void (*print)(struct type *type, struct value *val, FILE *f);
+               void (*print_type)(struct type *type, FILE *f);
+               int (*cmp_order)(struct type *t1, struct type *t2,
+                                struct value *v1, struct value *v2);
+               int (*cmp_eq)(struct type *t1, struct type *t2,
+                             struct value *v1, struct value *v2);
+               void (*dup)(struct type *type, struct value *vold,
+                           struct value *vnew);
+               int (*test)(struct type *type, struct value *val);
+               void (*free)(struct type *type, struct value *val);
+               void (*free_type)(struct type *t);
+               ## type functions
+               union {
+                       ## type union fields
+               };
        };
 
-       static struct type *Tbool, *Tstr, *Tnum, *Tnone, *Tlabel;
+###### parse context
+
+       struct type *typelist;
+
+###### includes
+       #include <stdarg.h>
 
 ###### ast functions
-       static struct type *add_base_type(struct parse_context *c, char *n,
-                                         enum vtype vt, int size)
+
+       static struct type *find_type(struct parse_context *c, struct text s)
        {
-               struct text txt = { n, strlen(n) };
-               struct type *t;
+               struct type *t = c->typelist;
 
-               t = add_type(c, txt, &base_prototype);
-               t->vtype = vt;
-               t->size = size;
-               t->align = size > sizeof(void*) ? sizeof(void*) : size;
-               if (t->size & (t->align - 1))
-                       t->size = (t->size | (t->align - 1)) + 1;
+               while (t && (t->anon ||
+                            text_cmp(t->name, s) != 0))
+                               t = t->next;
                return t;
        }
 
-###### context initialization
+       static struct type *_add_type(struct parse_context *c, struct text s,
+                                    struct type *proto, int anon)
+       {
+               struct type *n;
 
-       Tbool  = add_base_type(&context, "Boolean", Vbool, sizeof(char));
-       Tstr   = add_base_type(&context, "string", Vstr, sizeof(struct text));
-       Tnum   = add_base_type(&context, "number", Vnum, sizeof(mpq_t));
-       Tnone  = add_base_type(&context, "none", Vnone, 0);
-       Tlabel = add_base_type(&context, "label", Vlabel, sizeof(void*));
+               n = calloc(1, sizeof(*n));
+               if (proto)
+                       *n = *proto;
+               else
+                       n->size = -1;
+               n->name = s;
+               n->anon = anon;
+               n->next = c->typelist;
+               c->typelist = n;
+               return n;
+       }
 
-### Variables
+       static struct type *add_type(struct parse_context *c, struct text s,
+                                     struct type *proto)
+       {
+               return _add_type(c, s, proto, 0);
+       }
 
-Variables are scoped named values.  We store the names in a linked list
-of "bindings" sorted in lexical order, and use sequential search and
-insertion sort.
+       static struct type *add_anon_type(struct parse_context *c,
+                                         struct type *proto, char *name, ...)
+       {
+               struct text t;
+               va_list ap;
+
+               va_start(ap, name);
+               vasprintf(&t.txt, name, ap);
+               va_end(ap);
+               t.len = strlen(t.txt);
+               return _add_type(c, t, proto, 1);
+       }
+
+       static struct type *find_anon_type(struct parse_context *c,
+                                          struct type *proto, char *name, ...)
+       {
+               struct type *t = c->typelist;
+               struct text nm;
+               va_list ap;
+
+               va_start(ap, name);
+               vasprintf(&nm.txt, name, ap);
+               va_end(ap);
+               nm.len = strlen(name);
+
+               while (t && (!t->anon ||
+                            text_cmp(t->name, nm) != 0))
+                               t = t->next;
+               if (t) {
+                       free(nm.txt);
+                       return t;
+               }
+               return _add_type(c, nm, proto, 1);
+       }
+
+       static void free_type(struct type *t)
+       {
+               /* The type is always a reference to something in the
+                * context, so we don't need to free anything.
+                */
+       }
+
+       static void free_value(struct type *type, struct value *v)
+       {
+               if (type && v) {
+                       type->free(type, v);
+                       memset(v, 0x5a, type->size);
+               }
+       }
+
+       static void type_print(struct type *type, FILE *f)
+       {
+               if (!type)
+                       fputs("*unknown*type*", f);     // NOTEST
+               else if (type->name.len && !type->anon)
+                       fprintf(f, "%.*s", type->name.len, type->name.txt);
+               else if (type->print_type)
+                       type->print_type(type, f);
+               else if (type->name.len && type->anon)
+                       fprintf(f, "\"%.*s\"", type->name.len, type->name.txt);
+               else
+                       fputs("*invalid*type*", f);     // NOTEST
+       }
+
+       static void val_init(struct type *type, struct value *val)
+       {
+               if (type && type->init)
+                       type->init(type, val);
+       }
+
+       static void dup_value(struct type *type,
+                             struct value *vold, struct value *vnew)
+       {
+               if (type && type->dup)
+                       type->dup(type, vold, vnew);
+       }
+
+       static int value_cmp(struct type *tl, struct type *tr,
+                            struct value *left, struct value *right)
+       {
+               if (tl && tl->cmp_order)
+                       return tl->cmp_order(tl, tr, left, right);
+               if (tl && tl->cmp_eq)
+                       return tl->cmp_eq(tl, tr, left, right);
+               return -1;                              // NOTEST
+       }
+
+       static void print_value(struct type *type, struct value *v, FILE *f)
+       {
+               if (type && type->print)
+                       type->print(type, v, f);
+               else
+                       fprintf(f, "*Unknown*");                // NOTEST
+       }
+
+       static void prepare_types(struct parse_context *c)
+       {
+               struct type *t;
+               int retry = 1;
+               enum { none, some, cannot } progress = none;
+
+               while (retry) {
+                       retry = 0;
+
+                       for (t = c->typelist; t; t = t->next) {
+                               if (t->size < 0)
+                                       tok_err(c, "error: type used but not declared",
+                                                &t->first_use);
+                               if (t->size == 0 && t->prepare_type) {
+                                       if (t->prepare_type(c, t, 1))
+                                               progress = some;
+                                       else if (progress == cannot)
+                                               tok_err(c, "error: type has recursive definition",
+                                                       &t->first_use);
+                                       else
+                                               retry = 1;
+                               }
+                       }
+                       switch (progress) {
+                       case cannot:
+                               retry = 0; break;
+                       case none:
+                               progress = cannot; break;
+                       case some:
+                               progress = none; break;
+                       }
+               }
+       }
+
+###### forward decls
+
+       static void free_value(struct type *type, struct value *v);
+       static int type_compat(struct type *require, struct type *have, enum val_rules rules);
+       static void type_print(struct type *type, FILE *f);
+       static void val_init(struct type *type, struct value *v);
+       static void dup_value(struct type *type,
+                             struct value *vold, struct value *vnew);
+       static int value_cmp(struct type *tl, struct type *tr,
+                            struct value *left, struct value *right);
+       static void print_value(struct type *type, struct value *v, FILE *f);
+
+###### free context types
+
+       while (context.typelist) {
+               struct type *t = context.typelist;
+
+               context.typelist = t->next;
+               if (t->free_type)
+                       t->free_type(t);
+               if (t->anon)
+                       free(t->name.txt);
+               free(t);
+       }
+
+Type can be specified for local variables, for fields in a structure,
+for formal parameters to functions, and possibly elsewhere.  Different
+rules may apply in different contexts.  As a minimum, a named type may
+always be used.  Currently the type of a formal parameter can be
+different from types in other contexts, so we have a separate grammar
+symbol for those.
+
+###### Grammar
+
+       $*type
+       Type -> IDENTIFIER ${
+               $0 = find_type(c, $ID.txt);
+               if (!$0) {
+                       $0 = add_type(c, $ID.txt, NULL);
+                       $0->first_use = $ID;
+               }
+       }$
+       ## type grammar
+
+       FormalType -> Type ${ $0 = $<1; }$
+       ## formal type grammar
+
+#### Base Types
+
+Values of the base types can be numbers, which we represent as
+multi-precision fractions, strings, Booleans and labels.  When
+analysing the program we also need to allow for places where no value
+is meaningful (type `Tnone`) and where we don't know what type to
+expect yet (type is `NULL`).
+
+Values are never shared, they are always copied when used, and freed
+when no longer needed.
+
+When propagating type information around the program, we need to
+determine if two types are compatible, where type `NULL` is compatible
+with anything.  There are two special cases with type compatibility.
+In some cases a Boolean can be accepted as well as some other
+primary type.  In other cases a reference to the given type is
+acceptable in place of a value of the type itself.
+
+###### type functions
+
+       int (*compat)(struct type *this, struct type *other, enum val_rules rules);
+
+###### ast functions
+
+       static int type_compat(struct type *require, struct type *have,
+                              enum val_rules rules)
+       {
+               if (!require || !have)
+                       return 1;
+
+               if (require->compat)
+                       return require->compat(require, have, rules);
+
+               return require == have;
+       }
+
+###### includes
+       #include <gmp.h>
+       #include "parse_string.h"
+       #include "parse_number.h"
+
+###### libs
+       myLDLIBS := libnumber.o libstring.o -lgmp
+       LDLIBS := $(filter-out $(myLDLIBS),$(LDLIBS)) $(myLDLIBS)
+
+###### type union fields
+       enum vtype {Vnone, Vstr, Vnum, Vbool, Vlabel} vtype;
+
+###### value union fields
+       struct text str;
+       mpq_t num;
+       unsigned char bool;
+       int label;
+
+###### ast functions
+       static void _free_value(struct type *type, struct value *v)
+       {
+               if (!v)
+                       return;         // NOTEST
+               switch (type->vtype) {
+               case Vnone: break;
+               case Vstr: free(v->str.txt); break;
+               case Vnum: mpq_clear(v->num); break;
+               case Vlabel:
+               case Vbool: break;
+               }
+       }
+
+###### value functions
+
+       static void _val_init(struct type *type, struct value *val)
+       {
+               switch(type->vtype) {
+               case Vnone:             // NOTEST
+                       break;          // NOTEST
+               case Vnum:
+                       mpq_init(val->num); break;
+               case Vstr:
+                       val->str.txt = malloc(1);
+                       val->str.len = 0;
+                       break;
+               case Vbool:
+                       val->bool = 0;
+                       break;
+               case Vlabel:
+                       val->label = 0; // NOTEST
+                       break;          // NOTEST
+               }
+       }
+
+       static void _dup_value(struct type *type,
+                              struct value *vold, struct value *vnew)
+       {
+               switch (type->vtype) {
+               case Vnone:             // NOTEST
+                       break;          // NOTEST
+               case Vlabel:
+                       vnew->label = vold->label;      // NOTEST
+                       break;          // NOTEST
+               case Vbool:
+                       vnew->bool = vold->bool;
+                       break;
+               case Vnum:
+                       mpq_init(vnew->num);
+                       mpq_set(vnew->num, vold->num);
+                       break;
+               case Vstr:
+                       vnew->str.len = vold->str.len;
+                       vnew->str.txt = malloc(vnew->str.len);
+                       memcpy(vnew->str.txt, vold->str.txt, vnew->str.len);
+                       break;
+               }
+       }
+
+       static int _value_cmp(struct type *tl, struct type *tr,
+                             struct value *left, struct value *right)
+       {
+               int cmp;
+               if (tl != tr)
+                       return tl - tr;
+               switch (tl->vtype) {
+               case Vlabel: cmp = left->label == right->label ? 0 : 1; break;
+               case Vnum: cmp = mpq_cmp(left->num, right->num); break;
+               case Vstr: cmp = text_cmp(left->str, right->str); break;
+               case Vbool: cmp = left->bool - right->bool; break;
+               case Vnone: cmp = 0;                    // NOTEST
+               }
+               return cmp;
+       }
+
+       static void _print_value(struct type *type, struct value *v, FILE *f)
+       {
+               switch (type->vtype) {
+               case Vnone:                             // NOTEST
+                       fprintf(f, "*no-value*"); break;        // NOTEST
+               case Vlabel:                            // NOTEST
+                       fprintf(f, "*label-%d*", v->label); break; // NOTEST
+               case Vstr:
+                       fprintf(f, "%.*s", v->str.len, v->str.txt); break;
+               case Vbool:
+                       fprintf(f, "%s", v->bool ? "True":"False"); break;
+               case Vnum:
+                       {
+                       mpf_t fl;
+                       mpf_init2(fl, 20);
+                       mpf_set_q(fl, v->num);
+                       gmp_fprintf(f, "%.10Fg", fl);
+                       mpf_clear(fl);
+                       break;
+                       }
+               }
+       }
+
+       static void _free_value(struct type *type, struct value *v);
+
+       static int bool_test(struct type *type, struct value *v)
+       {
+               return v->bool;
+       }
+
+       static struct type base_prototype = {
+               .init = _val_init,
+               .print = _print_value,
+               .cmp_order = _value_cmp,
+               .cmp_eq = _value_cmp,
+               .dup = _dup_value,
+               .free = _free_value,
+       };
+
+       static struct type *Tbool, *Tstr, *Tnum, *Tnone, *Tlabel;
+
+###### ast functions
+       static struct type *add_base_type(struct parse_context *c, char *n,
+                                         enum vtype vt, int size)
+       {
+               struct text txt = { n, strlen(n) };
+               struct type *t;
+
+               t = add_type(c, txt, &base_prototype);
+               t->vtype = vt;
+               t->size = size;
+               t->align = size > sizeof(void*) ? sizeof(void*) : size;
+               if (t->size & (t->align - 1))
+                       t->size = (t->size | (t->align - 1)) + 1;       // NOTEST
+               return t;
+       }
+
+###### context initialization
+
+       Tbool  = add_base_type(&context, "Boolean", Vbool, sizeof(char));
+       Tbool->test = bool_test;
+       Tstr   = add_base_type(&context, "string", Vstr, sizeof(struct text));
+       Tnum   = add_base_type(&context, "number", Vnum, sizeof(mpq_t));
+       Tnone  = add_base_type(&context, "none", Vnone, 0);
+       Tlabel = add_base_type(&context, "label", Vlabel, sizeof(void*));
+
+##### Base Values
+
+We have already met values as separate objects.  When manifest constants
+appear in the program text, that must result in an executable which has
+a constant value.  So the `val` structure embeds a value in an
+executable.
+
+###### exec type
+       Xval,
+
+###### ast
+       struct val {
+               struct exec;
+               struct type *vtype;
+               struct value val;
+       };
+
+###### ast functions
+       struct val *new_val(struct type *T, struct token tk)
+       {
+               struct val *v = new_pos(val, tk);
+               v->vtype = T;
+               return v;
+       }
+
+###### declare terminals
+       $TERM True False
+
+###### Grammar
+
+       $*val
+       Value ->  True ${
+               $0 = new_val(Tbool, $1);
+               $0->val.bool = 1;
+       }$
+       | False ${
+               $0 = new_val(Tbool, $1);
+               $0->val.bool = 0;
+       }$
+       | NUMBER ${ {
+               char tail[3] = "";
+               $0 = new_val(Tnum, $1);
+               if (number_parse($0->val.num, tail, $1.txt) == 0) {
+                       mpq_init($0->val.num);
+                       tok_err(c, "error: unsupported number format", &$NUM);
+               } else if (tail[0])
+                       tok_err(c, "error: unsupported number suffix", &$1);
+       } }$
+       | STRING ${ {
+               char tail[3];
+               $0 = new_val(Tstr, $1);
+               string_parse(&$1, '\\', &$0->val.str, tail);
+               if (tail[0])
+                       tok_err(c, "error: unsupported string suffix",
+                               &$1);
+       } }$
+       | MULTI_STRING ${ {
+               char tail[3];
+               $0 = new_val(Tstr, $1);
+               string_parse(&$1, '\\', &$0->val.str, tail);
+               if (tail[0])
+                       tok_err(c, "error: unsupported string suffix",
+                               &$1);
+       } }$
+
+###### print exec cases
+       case Xval:
+       {
+               struct val *v = cast(val, e);
+               if (v->vtype == Tstr)
+                       printf("\"");
+               // FIXME how to ensure numbers have same precision.
+               print_value(v->vtype, &v->val, stdout);
+               if (v->vtype == Tstr)
+                       printf("\"");
+               break;
+       }
+
+###### propagate exec cases
+       case Xval:
+       {
+               struct val *val = cast(val, prog);
+               if (!type_compat(type, val->vtype, rules))
+                       type_err(c, "error: expected %1 found %2",
+                                  prog, type, rules, val->vtype);
+               *perr |= Erval;
+               return val->vtype;
+       }
+
+###### interp exec cases
+       case Xval:
+               rvtype = cast(val, e)->vtype;
+               dup_value(rvtype, &cast(val, e)->val, &rv);
+               break;
+
+###### ast functions
+       static void free_val(struct val *v)
+       {
+               if (v)
+                       free_value(v->vtype, &v->val);
+               free(v);
+       }
+
+###### free exec cases
+       case Xval: free_val(cast(val, e)); break;
+
+#### Labels
+
+Labels are a temporary concept until I implement enums.  There are an
+anonymous enum which is declared by usage.  They are only allowed in
+`use` statements and corresponding `case` entries.  They appear as a
+period followed by an identifier.  All identifiers that are "used" must
+have a "case".
+
+For now, we have a global list of labels, and don't check that all "use"
+match "case".
+
+###### exec type
+       Xlabel,
+
+###### ast
+       struct label {
+               struct exec;
+               struct text name;
+               int value;
+       };
+###### free exec cases
+       case Xlabel:
+               free(e);
+               break;
+###### print exec cases
+       case Xlabel: {
+               struct label *l = cast(label, e);
+               printf(".%.*s", l->name.len, l->name.txt);
+               break;
+       }
+
+###### ast
+       struct labels {
+               struct labels *next;
+               struct text name;
+               int value;
+       };
+###### parse context
+       struct labels *labels;
+       int next_label;
+###### ast functions
+       static int label_lookup(struct parse_context *c, struct text name)
+       {
+               struct labels *l, **lp = &c->labels;
+               while (*lp && text_cmp((*lp)->name, name) < 0)
+                       lp = &(*lp)->next;
+               if (*lp && text_cmp((*lp)->name, name) == 0)
+                       return (*lp)->value;
+               l = calloc(1, sizeof(*l));
+               l->next = *lp;
+               l->name = name;
+               if (c->next_label == 0)
+                       c->next_label = 2;
+               l->value = c->next_label;
+               c->next_label += 1;
+               *lp = l;
+               return l->value;
+       }
+
+###### free context storage
+       while (context.labels) {
+               struct labels *l = context.labels;
+               context.labels = l->next;
+               free(l);
+       }
+
+###### declare terminals
+       $TERM .
+###### term grammar
+       | . IDENTIFIER ${ {
+               struct label *l = new_pos(label, $ID);
+               l->name = $ID.txt;
+               $0 = l;
+       } }$
+###### propagate exec cases
+       case Xlabel: {
+               struct label *l = cast(label, prog);
+               l->value = label_lookup(c, l->name);
+               if (!type_compat(type, Tlabel, rules))
+                       type_err(c, "error: expected %1 found %2",
+                                prog, type, rules, Tlabel);
+               *perr |= Erval;
+               return Tlabel;
+       }
+###### interp exec cases
+       case Xlabel : {
+               struct label *l = cast(label, e);
+               rv.label = l->value;
+               rvtype = Tlabel;
+               break;
+       }
+
+### Variables
+
+Variables are scoped named values.  We store the names in a linked list
+of "bindings" sorted in lexical order, and use sequential search and
+insertion sort.
 
 ###### ast
 
@@ -838,6 +1585,67 @@ cannot nest, so a declaration while a name is in-scope is an error.
                ## variable fields
        };
 
+The parser will want to be able to free a variable, but as this will
+also be a reference to something stored in the parse context, there is
+not action needed.
+
+###### ast functions
+       void free_variable(struct variable *v)
+       {
+       }
+
+When a scope closes, the values of the variables might need to be freed.
+This happens in the context of some `struct exec` and each `exec` will
+need to know which variables need to be freed when it completes.  To
+improve visibility, we add a comment when printing any `exec` that
+embodies a scope to list the variables that must be freed when it ends.
+
+####### exec fields
+       struct variable *to_free;
+
+####### variable fields
+       struct exec *cleanup_exec;
+       struct variable *next_free;
+
+####### interp exec cleanup
+       {
+               struct variable *v;
+               for (v = e->to_free; v; v = v->next_free) {
+                       struct value *val = var_value(c, v);
+                       free_value(v->type, val);
+               }
+       }
+
+###### print exec extras
+       if (e->to_free) {
+               struct variable *v;
+               do_indent(indent, "/* FREE");
+               for (v = e->to_free; v; v = v->next_free) {
+                       printf(" %.*s", v->name->name.len, v->name->name.txt);
+                       printf("[%d,%d]", v->scope_start, v->scope_end);
+                       if (v->frame_pos >= 0)
+                               printf("(%d+%d)", v->frame_pos,
+                                      v->type ? v->type->size:0);
+               }
+               printf(" */\n");
+       }
+
+###### ast functions
+       static void variable_unlink_exec(struct variable *v)
+       {
+               struct variable **vp;
+               if (!v->cleanup_exec)
+                       return;
+               for (vp = &v->cleanup_exec->to_free;
+                   *vp; vp = &(*vp)->next_free) {
+                       if (*vp != v)
+                               continue;
+                       *vp = v->next_free;
+                       v->cleanup_exec = NULL;
+                       break;
+               }
+       }
+
 While the naming seems strange, we include local constants in the
 definition of variables.  A name declared `var := value` can
 subsequently be changed, but a name declared `var ::= value` cannot -
@@ -885,6 +1693,12 @@ is used to distinguish between the first of a set of parallel scopes,
 in which declared variables must not be in scope, and subsequent
 branches, whether they may already be conditionally scoped.
 
+We need a total ordering of scopes so we can easily compare to variables
+to see if they are concurrently in scope.  To achieve this we record a
+`scope_count` which is actually a count of both beginnings and endings
+of scopes.  Then each variable has a record of the scope count where it
+enters scope, and where it leaves.
+
 To push a new frame *before* any code in the frame is parsed, we need a
 grammar reduction.  This is most easily achieved with a grammar
 element which derives the empty string, and creates the new scope when
@@ -899,8 +1713,12 @@ like "if" and the code following it.
 
 ###### parse context
        int scope_depth;
+       int scope_count;
        struct scope *scope_stack;
 
+###### variable fields
+       int scope_start, scope_end;
+
 ###### ast functions
        static void scope_pop(struct parse_context *c)
        {
@@ -909,6 +1727,7 @@ like "if" and the code following it.
                c->scope_stack = s->parent;
                free(s);
                c->scope_depth -= 1;
+               c->scope_count += 1;
        }
 
        static void scope_push(struct parse_context *c)
@@ -919,13 +1738,13 @@ like "if" and the code following it.
                s->parent = c->scope_stack;
                c->scope_stack = s;
                c->scope_depth += 1;
+               c->scope_count += 1;
        }
 
 ###### Grammar
 
        $void
        OpenScope -> ${ scope_push(c); }$
-       ClosePara -> ${ var_block_close(c, CloseParallel); }$
 
 Each variable records a scope depth and is in one of four states:
 
@@ -946,17 +1765,20 @@ Each variable records a scope depth and is in one of four states:
   enclosed the declaration, and that has closed.
 
 - "conditionally in scope".  The "in scope" block and all parallel
-  scopes have closed, and no further mention of the name has been
-  seen.  This state includes a secondary nest depth which records the
-  outermost scope seen since the variable became conditionally in
-  scope.  If a use of the name is found, the variable becomes "in
-  scope" and that secondary depth becomes the recorded scope depth.
-  If the name is declared as a new variable, the old variable becomes
-  "out of scope" and the recorded scope depth stays unchanged.
+  scopes have closed, and no further mention of the name has been seen.
+  This state includes a secondary nest depth (`min_depth`) which records
+  the outermost scope seen since the variable became conditionally in
+  scope.  If a use of the name is found, the variable becomes "in scope"
+  and that secondary depth becomes the recorded scope depth.  If the
+  name is declared as a new variable, the old variable becomes "out of
+  scope" and the recorded scope depth stays unchanged.
 
 - "out of scope".  The variable is neither in scope nor conditionally
   in scope.  It is permanently out of scope now and can be removed from
-  the "in scope" stack.
+  the "in scope" stack.  When a variable becomes out-of-scope it is
+  moved to a separate list (`out_scope`) of variables which have fully
+  known scope.  This will be used at the end of each function to assign
+  each variable a place in the stack frame.
 
 ###### variable fields
        int depth, min_depth;
@@ -966,6 +1788,7 @@ Each variable records a scope depth and is in one of four states:
 ###### parse context
 
        struct variable *in_scope;
+       struct variable *out_scope;
 
 All variables with the same name are linked together using the
 'previous' link.  Those variable that have been affirmatively merged all
@@ -983,7 +1806,7 @@ list of in_scope names.
 
 The storage of the value of a variable will be described later.  For now
 we just need to know that when a variable goes out of scope, it might
-need to be freed.  For this we need to be able to find it, so assume that 
+need to be freed.  For this we need to be able to find it, so assume that
 `var_value()` will provide that.
 
 ###### variable fields
@@ -995,23 +1818,26 @@ need to be freed.  For this we need to be able to find it, so assume that
        {
                struct variable *v;
 
-               if (primary->merged)
-                       // shouldn't happen
-                       primary = primary->merged;      // NOTEST
+               primary = primary->merged;
 
                for (v = primary->previous; v; v=v->previous)
                        if (v == secondary || v == secondary->merged ||
                            v->merged == secondary ||
-                           (v->merged && v->merged == secondary->merged)) {
+                           v->merged == secondary->merged) {
                                v->scope = OutScope;
                                v->merged = primary;
+                               if (v->scope_start < primary->scope_start)
+                                       primary->scope_start = v->scope_start;
+                               if (v->scope_end > primary->scope_end)
+                                       primary->scope_end = v->scope_end;      // NOTEST
+                               variable_unlink_exec(v);
                        }
        }
 
 ###### forward decls
        static struct value *var_value(struct parse_context *c, struct variable *v);
 
-###### free context vars
+###### free global vars
 
        while (context.varlist) {
                struct binding *b = context.varlist;
@@ -1019,26 +1845,30 @@ need to be freed.  For this we need to be able to find it, so assume that
                context.varlist = b->next;
                free(b);
                while (v) {
-                       struct variable *t = v;
-
-                       v = t->previous;
-                       free_value(t->type, var_value(&context, t));
-                       if (t->depth == 0)
-                               // This is a global constant
-                               free_exec(t->where_decl);
-                       free(t);
+                       struct variable *next = v->previous;
+
+                       if (v->global && v->frame_pos >= 0) {
+                               free_value(v->type, var_value(&context, v));
+                               if (v->depth == 0 && v->type->free == function_free)
+                                       // This is a function constant
+                                       free_exec(v->where_decl);
+                       }
+                       free(v);
+                       v = next;
                }
        }
 
 #### Manipulating Bindings
 
-When a name is conditionally visible, a new declaration discards the
-old binding - the condition lapses.  Conversely a usage of the name
-affirms the visibility and extends it to the end of the containing
-block - i.e. the block that contains both the original declaration and
-the latest usage.  This is determined from `min_depth`.  When a
-conditionally visible variable gets affirmed like this, it is also
-merged with other conditionally visible variables with the same name.
+When a name is conditionally visible, a new declaration discards the old
+binding - the condition lapses.  Similarly when we reach the end of a
+function (outermost non-global scope) any conditional scope must lapse.
+Conversely a usage of the name affirms the visibility and extends it to
+the end of the containing block - i.e.  the block that contains both the
+original declaration and the latest usage.  This is determined from
+`min_depth`.  When a conditionally visible variable gets affirmed like
+this, it is also merged with other conditionally visible variables with
+the same name.
 
 When we parse a variable declaration we either report an error if the
 name is currently bound, or create a new variable at the current nest
@@ -1060,7 +1890,7 @@ switch.  Other scopes are "sequential".
 
 When exiting a parallel scope we check if there are any variables that
 were previously pending and are still visible. If there are, then
-there weren't redeclared in the most recent scope, so they cannot be
+they weren't redeclared in the most recent scope, so they cannot be
 merged and must become out-of-scope.  If it is not the first of
 parallel scopes (based on `child_count`), we check that there was a
 previous binding that is still pending-scope.  If there isn't, the new
@@ -1073,7 +1903,7 @@ we need to mark all pending-scope variable as out-of-scope.  Otherwise
 all pending-scope variables become conditionally scoped.
 
 ###### ast
-       enum closetype { CloseSequential, CloseParallel, CloseElse };
+       enum closetype { CloseSequential, CloseFunction, CloseParallel, CloseElse };
 
 ###### ast functions
 
@@ -1098,10 +1928,13 @@ all pending-scope variables become conditionally scoped.
                v->previous = b->var;
                b->var = v;
                v->name = b;
+               v->merged = v;
                v->min_depth = v->depth = c->scope_depth;
                v->scope = InScope;
                v->in_scope = c->in_scope;
+               v->scope_start = c->scope_count;
                c->in_scope = v;
+               ## variable init
                return v;
        }
 
@@ -1133,33 +1966,75 @@ all pending-scope variables become conditionally scoped.
                return v;
        }
 
-       static void var_block_close(struct parse_context *c, enum closetype ct)
+       static int var_refile(struct parse_context *c, struct variable *v)
+       {
+               /* Variable just went out of scope.  Add it to the out_scope
+                * list, sorted by ->scope_start
+                */
+               struct variable **vp = &c->out_scope;
+               while ((*vp) && (*vp)->scope_start < v->scope_start)
+                       vp = &(*vp)->in_scope;
+               v->in_scope = *vp;
+               *vp = v;
+               return 0;
+       }
+
+       static void var_block_close(struct parse_context *c, enum closetype ct,
+                                   struct exec *e)
        {
-               /* Close off all variables that are in_scope */
+               /* Close off all variables that are in_scope.
+                * Some variables in c->scope may already be not-in-scope,
+                * such as when a PendingScope variable is hidden by a new
+                * variable with the same name.
+                * So we check for v->name->var != v and drop them.
+                * If we choose to make a variable OutScope, we drop it
+                * immediately too.
+                */
                struct variable *v, **vp, *v2;
 
                scope_pop(c);
                for (vp = &c->in_scope;
-                    v = *vp, v && v->depth > c->scope_depth && v->min_depth > c->scope_depth;
-                    ) {
-                       if (v->name->var == v) switch (ct) {
+                    (v = *vp) && v->min_depth > c->scope_depth;
+                    (v->scope == OutScope || v->name->var != v)
+                    ? (*vp =  v->in_scope, var_refile(c, v))
+                    : ( vp = &v->in_scope, 0)) {
+                       v->min_depth = c->scope_depth;
+                       if (v->name->var != v)
+                               /* This is still in scope, but we haven't just
+                                * closed the scope.
+                                */
+                               continue;
+                       v->min_depth = c->scope_depth;
+                       if (v->scope == InScope)
+                               v->scope_end = c->scope_count;
+                       if (v->scope == InScope && e && !v->global) {
+                               /* This variable gets cleaned up when
+                                * 'e' finishes
+                                */
+                               variable_unlink_exec(v);
+                               v->cleanup_exec = e;
+                               v->next_free = e->to_free;
+                               e->to_free = v;
+                       }
+                       switch (ct) {
                        case CloseElse:
                        case CloseParallel: /* handle PendingScope */
                                switch(v->scope) {
                                case InScope:
                                case CondScope:
                                        if (c->scope_stack->child_count == 1)
+                                               /* first among parallel branches */
                                                v->scope = PendingScope;
                                        else if (v->previous &&
                                                 v->previous->scope == PendingScope)
+                                               /* all previous branches used name */
                                                v->scope = PendingScope;
-                                       else if (v->type == Tlabel)
-                                               v->scope = PendingScope;
-                                       else if (v->name->var == v)
+                                       else
                                                v->scope = OutScope;
                                        if (ct == CloseElse) {
-                                               /* All Pending variables with this name
-                                                * are now Conditional */
+                                               /* All Pending variables with
+                                                * this name are now Conditional
+                                                */
                                                for (v2 = v;
                                                     v2 && v2->scope == PendingScope;
                                                     v2 = v2->previous)
@@ -1167,18 +2042,25 @@ all pending-scope variables become conditionally scoped.
                                        }
                                        break;
                                case PendingScope:
-                                       for (v2 = v;
-                                            v2 && v2->scope == PendingScope;
-                                            v2 = v2->previous)
-                                               if (v2->type != Tlabel)
-                                                       v2->scope = OutScope;
-                                       break;
-                               case OutScope: break;
+                                       /* Not possible as it would require
+                                        * parallel scope to be nested immediately
+                                        * in a parallel scope, and that never
+                                        * happens.
+                                        */                     // NOTEST
+                               case OutScope:
+                                       /* Not possible as we already tested for
+                                        * OutScope
+                                        */
+                                       abort();                // NOTEST
                                }
                                break;
+                       case CloseFunction:
+                               if (v->scope == CondScope)
+                                       /* Condition cannot continue past end of
+                                        * function */
+                                       v->scope = InScope;
+                               /* fallthrough */
                        case CloseSequential:
-                               if (v->type == Tlabel)
-                                       v->scope = PendingScope;
                                switch (v->scope) {
                                case InScope:
                                        v->scope = OutScope;
@@ -1192,27 +2074,19 @@ all pending-scope variables become conditionally scoped.
                                        for (v2 = v;
                                             v2 && v2->scope == PendingScope;
                                             v2 = v2->previous)
-                                               if (v2->type == Tlabel) {
-                                                       v2->scope = CondScope;
-                                                       v2->min_depth = c->scope_depth;
-                                               } else
-                                                       v2->scope = OutScope;
+                                               v2->scope = OutScope;
                                        break;
                                case CondScope:
                                case OutScope: break;
                                }
                                break;
                        }
-                       if (v->scope == OutScope || v->name->var != v)
-                               *vp = v->in_scope;
-                       else
-                               vp = &v->in_scope;
                }
        }
 
 #### Storing Values
 
-The value of a variable is store separately from the variable, on an
+The value of a variable is stored separately from the variable, on an
 analogue of a stack frame.  There are (currently) two frames that can be
 active.  A global frame which currently only stores constants, and a
 stacked frame which stores local variables.  Each variable knows if it
@@ -1223,9 +2097,15 @@ the frame needs to be reallocated as it grows so it can store those
 values.  The local frame doesn't get values until the interpreted phase
 is started, so there is no need to allocate until the size is known.
 
+We initialise the `frame_pos` to an impossible value, so that we can
+tell if it was set or not later.
+
 ###### variable fields
-               short frame_pos;
-               short global;
+       short frame_pos;
+       short global;
+
+###### variable init
+       v->frame_pos = -1;
 
 ###### parse context
 
@@ -1233,13 +2113,17 @@ is started, so there is no need to allocate until the size is known.
        short local_size;
        void *global, *local;
 
+###### forward decls
+       static struct value *global_alloc(struct parse_context *c, struct type *t,
+                                         struct variable *v, struct value *init);
+
 ###### ast functions
 
        static struct value *var_value(struct parse_context *c, struct variable *v)
        {
                if (!v->global) {
                        if (!c->local || !v->type)
-                               return NULL;
+                               return NULL;    // NOTEST
                        if (v->frame_pos + v->type->size > c->local_size) {
                                printf("INVALID frame_pos\n");  // NOTEST
                                exit(2);                        // NOTEST
@@ -1262,7 +2146,7 @@ is started, so there is no need to allocate until the size is known.
                struct variable scratch;
 
                if (t->prepare_type)
-                       t->prepare_type(c, t, 1);
+                       t->prepare_type(c, t, 1);       // NOTEST
 
                if (c->global_size & (t->align - 1))
                        c->global_size = (c->global_size + t->align) & ~(t->align-1);
@@ -1277,342 +2161,310 @@ is started, so there is no need to allocate until the size is known.
                if (init)
                        memcpy(ret, init, t->size);
                else
-                       val_init(t, ret);
+                       val_init(t, ret);       // NOTEST
                return ret;
        }
 
 As global values are found -- struct field initializers, labels etc --
 `global_alloc()` is called to record the value in the global frame.
 
-When the program is fully parsed, we need to walk the list of variables
-to find any that weren't merged away and that aren't global, and to
-calculate the frame size and assign a frame position for each variable.
-For this we have `scope_finalize()`.
-
-###### ast functions
-
-       static void scope_finalize(struct parse_context *c)
-       {
-               struct binding *b;
-
-               for (b = c->varlist; b; b = b->next) {
-                       struct variable *v;
-                       for (v = b->var; v; v = v->previous) {
-                               struct type *t = v->type;
-                               if (v->merged && v->merged != v)
-                                       continue;
-                               if (v->global)
-                                       continue;
-                               if (c->local_size & (t->align - 1))
-                                       c->local_size = (c->local_size + t->align) & ~(t->align-1);
-                               v->frame_pos = c->local_size;
-                               c->local_size += v->type->size;
-                       }
-               }
-               c->local = calloc(1, c->local_size);
-       }
-
-###### free context vars
-       free(context.global);
-       free(context.local);
-
-### Executables
-
-Executables can be lots of different things.  In many cases an
-executable is just an operation combined with one or two other
-executables.  This allows for expressions and lists etc.  Other times an
-executable is something quite specific like a constant or variable name.
-So we define a `struct exec` to be a general executable with a type, and
-a `struct binode` which is a subclass of `exec`, forms a node in a
-binary tree, and holds an operation.  There will be other subclasses,
-and to access these we need to be able to `cast` the `exec` into the
-various other types.  The first field in any `struct exec` is the type
-from the `exec_types` enum.
-
-###### macros
-       #define cast(structname, pointer) ({            \
-               const typeof( ((struct structname *)0)->type) *__mptr = &(pointer)->type; \
-               if (__mptr && *__mptr != X##structname) abort();                \
-               (struct structname *)( (char *)__mptr);})
-
-       #define new(structname) ({                                              \
-               struct structname *__ptr = ((struct structname *)calloc(1,sizeof(struct structname))); \
-               __ptr->type = X##structname;                                            \
-               __ptr->line = -1; __ptr->column = -1;                                   \
-               __ptr;})
-
-       #define new_pos(structname, token) ({                                           \
-               struct structname *__ptr = ((struct structname *)calloc(1,sizeof(struct structname))); \
-               __ptr->type = X##structname;                                            \
-               __ptr->line = token.line; __ptr->column = token.col;                    \
-               __ptr;})
-
-###### ast
-       enum exec_types {
-               Xbinode,
-               ## exec type
-       };
-       struct exec {
-               enum exec_types type;
-               int line, column;
-       };
-       struct binode {
-               struct exec;
-               enum Btype {
-                       ## Binode types
-               } op;
-               struct exec *left, *right;
-       };
-
-###### ast functions
-
-       static int __fput_loc(struct exec *loc, FILE *f)
-       {
-               if (!loc)
-                       return 0;               // NOTEST
-               if (loc->line >= 0) {
-                       fprintf(f, "%d:%d: ", loc->line, loc->column);
-                       return 1;
-               }
-               if (loc->type == Xbinode)
-                       return __fput_loc(cast(binode,loc)->left, f) ||
-                              __fput_loc(cast(binode,loc)->right, f);  // NOTEST
-               return 0;                       // NOTEST
-       }
-       static void fput_loc(struct exec *loc, FILE *f)
-       {
-               if (!__fput_loc(loc, f))
-                       fprintf(f, "??:??: ");  // NOTEST
-       }
-
-Each different type of `exec` node needs a number of functions defined,
-a bit like methods.  We must be able to free it, print it, analyse it
-and execute it.  Once we have specific `exec` types we will need to
-parse them too.  Let's take this a bit more slowly.
-
-#### Freeing
-
-The parser generator requires a `free_foo` function for each struct
-that stores attributes and they will often be `exec`s and subtypes
-there-of.  So we need `free_exec` which can handle all the subtypes,
-and we need `free_binode`.
-
-###### ast functions
-
-       static void free_binode(struct binode *b)
-       {
-               if (!b)
-                       return;
-               free_exec(b->left);
-               free_exec(b->right);
-               free(b);
-       }
-
-###### core functions
-       static void free_exec(struct exec *e)
-       {
-               if (!e)
-                       return;
-               switch(e->type) {
-                       ## free exec cases
-               }
-       }
-
-###### forward decls
-
-       static void free_exec(struct exec *e);
-
-###### free exec cases
-       case Xbinode: free_binode(cast(binode, e)); break;
-
-#### Printing
-
-Printing an `exec` requires that we know the current indent level for
-printing line-oriented components.  As will become clear later, we
-also want to know what sort of bracketing to use.
-
-###### ast functions
-
-       static void do_indent(int i, char *str)
-       {
-               while (i--)
-                       printf("    ");
-               printf("%s", str);
-       }
-
-###### core functions
-       static void print_binode(struct binode *b, int indent, int bracket)
-       {
-               struct binode *b2;
-               switch(b->op) {
-               ## print binode cases
-               }
-       }
-
-       static void print_exec(struct exec *e, int indent, int bracket)
+When the program is fully parsed, each function is analysed, we need to
+walk the list of variables local to that function and assign them an
+offset in the stack frame.  For this we have `scope_finalize()`.
+
+We keep the stack from dense by re-using space for between variables
+that are not in scope at the same time.  The `out_scope` list is sorted
+by `scope_start` and as we process a varible, we move it to an FIFO
+stack.  For each variable we consider, we first discard any from the
+stack anything that went out of scope before the new variable came in.
+Then we place the new variable just after the one at the top of the
+stack.
+
+###### ast functions
+
+       static void scope_finalize(struct parse_context *c, struct type *ft)
        {
-               if (!e)
-                       return;         // NOTEST
-               switch (e->type) {
-               case Xbinode:
-                       print_binode(cast(binode, e), indent, bracket); break;
-               ## print exec cases
+               int size = ft->function.local_size;
+               struct variable *next = ft->function.scope;
+               struct variable *done = NULL;
+
+               while (next) {
+                       struct variable *v = next;
+                       struct type *t = v->type;
+                       int pos;
+                       next = v->in_scope;
+                       if (v->merged != v)
+                               continue;
+                       if (!t)
+                               continue;       // NOTEST
+                       if (v->frame_pos >= 0)
+                               continue;
+                       while (done && done->scope_end < v->scope_start)
+                               done = done->in_scope;
+                       if (done)
+                               pos = done->frame_pos + done->type->size;
+                       else
+                               pos = ft->function.local_size;
+                       if (pos & (t->align - 1))
+                               pos = (pos + t->align) & ~(t->align-1);
+                       v->frame_pos = pos;
+                       if (size < pos + v->type->size)
+                               size = pos + v->type->size;
+                       v->in_scope = done;
+                       done = v;
                }
+               c->out_scope = NULL;
+               ft->function.local_size = size;
        }
 
-###### forward decls
+###### free context storage
+       free(context.global);
 
-       static void print_exec(struct exec *e, int indent, int bracket);
+#### Variables as executables
 
-#### Analysing
+Just as we used a `val` to wrap a value into an `exec`, we similarly
+need a `var` to wrap a `variable` into an exec.  While each `val`
+contained a copy of the value, each `var` holds a link to the variable
+because it really is the same variable no matter where it appears.
+When a variable is used, we need to remember to follow the `->merged`
+link to find the primary instance.
 
-As discussed, analysis involves propagating type requirements around the
-program and looking for errors.
+When a variable is declared, it may or may not be given an explicit
+type.  We need to record which so that we can report the parsed code
+correctly.
 
-So `propagate_types` is passed an expected type (being a `struct type`
-pointer together with some `val_rules` flags) that the `exec` is
-expected to return, and returns the type that it does return, either
-of which can be `NULL` signifying "unknown".  An `ok` flag is passed
-by reference. It is set to `0` when an error is found, and `2` when
-any change is made.  If it remains unchanged at `1`, then no more
-propagation is needed.
+###### exec type
+       Xvar,
 
 ###### ast
+       struct var {
+               struct exec;
+               struct variable *var;
+       };
 
-       enum val_rules {Rnolabel = 1<<0, Rboolok = 1<<1, Rnoconstant = 2<<1};
-
-###### format cases
-       case 'r':
-               if (rules & Rnolabel)
-                       fputs(" (labels not permitted)", stderr);
-               break;
+###### variable fields
+       int explicit_type;
 
-###### core functions
+###### Grammar
 
-       static struct type *propagate_types(struct exec *prog, struct parse_context *c, int *ok,
-                                           struct type *type, int rules);
-       static struct type *__propagate_types(struct exec *prog, struct parse_context *c, int *ok,
-                                             struct type *type, int rules)
-       {
-               struct type *t;
+       $TERM : ::
 
-               if (!prog)
-                       return Tnone;
+       $*var
+       VariableDecl -> IDENTIFIER : ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v)
+                       v->where_decl = $0;
+               else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
+       | IDENTIFIER :: ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v) {
+                       v->where_decl = $0;
+                       v->constant = 1;
+               } else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
+       | IDENTIFIER : Type ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v) {
+                       v->where_decl = $0;
+                       v->where_set = $0;
+                       v->type = $<Type;
+                       v->explicit_type = 1;
+               } else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
+       | IDENTIFIER :: Type ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v) {
+                       v->where_decl = $0;
+                       v->where_set = $0;
+                       v->type = $<Type;
+                       v->constant = 1;
+                       v->explicit_type = 1;
+               } else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
 
-               switch (prog->type) {
-               case Xbinode:
-               {
-                       struct binode *b = cast(binode, prog);
-                       switch (b->op) {
-                       ## propagate binode cases
+       $*exec
+       Variable -> IDENTIFIER ${ {
+               struct variable *v = var_ref(c, $1.txt);
+               $0 = new_pos(var, $1);
+               if (v == NULL) {
+                       /* This might be a global const or a label
+                        * Allocate a var with impossible type Tnone,
+                        * which will be adjusted when we find out what it is,
+                        * or will trigger an error.
+                        */
+                       v = var_decl(c, $1.txt);
+                       if (v) {
+                               v->type = Tnone;
+                               v->where_decl = $0;
+                               v->where_set = $0;
                        }
-                       break;
-               }
-               ## propagate exec cases
                }
-               return Tnone;
-       }
+               cast(var, $0)->var = v;
+       } }$
 
-       static struct type *propagate_types(struct exec *prog, struct parse_context *c, int *ok,
-                                           struct type *type, int rules)
+###### print exec cases
+       case Xvar:
        {
-               struct type *ret = __propagate_types(prog, c, ok, type, rules);
-
-               if (c->parse_error)
-                       *ok = 0;
-               return ret;
+               struct var *v = cast(var, e);
+               if (v->var) {
+                       struct binding *b = v->var->name;
+                       printf("%.*s", b->name.len, b->name.txt);
+               }
+               break;
        }
 
-#### Interpreting
-
-Interpreting an `exec` doesn't require anything but the `exec`.  State
-is stored in variables and each variable will be directly linked from
-within the `exec` tree.  The exception to this is the `main` function
-which needs to look at command line arguments.  This function will be
-interpreted separately.
-
-Each `exec` can return a value combined with a type in `struct lrval`.
-The type may be `Tnone` but must be non-NULL.  Some `exec`s will return
-the location of a value, which can be updated, in `lval`.  Others will
-set `lval` to NULL indicating that there is a value of appropriate type
-in `rval`.
-
-###### core functions
-
-       struct lrval {
-               struct type *type;
-               struct value rval, *lval;
-       };
+###### format cases
+       case 'v':
+               if (loc && loc->type == Xvar) {
+                       struct var *v = cast(var, loc);
+                       if (v->var) {
+                               struct binding *b = v->var->name;
+                               fprintf(stderr, "%.*s", b->name.len, b->name.txt);
+                       } else
+                               fputs("???", stderr);   // NOTEST
+               } else
+                       fputs("NOTVAR", stderr);        // NOTEST
+               break;
 
-       static struct lrval _interp_exec(struct parse_context *c, struct exec *e);
+###### propagate exec cases
 
-       static struct value interp_exec(struct parse_context *c, struct exec *e,
-                                       struct type **typeret)
+       case Xvar:
        {
-               struct lrval ret = _interp_exec(c, e);
-
-               if (!ret.type) abort();
-               if (typeret)
-                       *typeret = ret.type;
-               if (ret.lval)
-                       dup_value(ret.type, ret.lval, &ret.rval);
-               return ret.rval;
+               struct var *var = cast(var, prog);
+               struct variable *v = var->var;
+               if (!v) {
+                       type_err(c, "%d:BUG: no variable!!", prog, NULL, 0, NULL); // NOTEST
+                       return Tnone;                                   // NOTEST
+               }
+               v = v->merged;
+               if (v->type == Tnone && v->where_decl == prog)
+                       type_err(c, "error: variable used but not declared: %v",
+                                prog, NULL, 0, NULL);
+               if (v->type == NULL) {
+                       if (type && !(*perr & Efail)) {
+                               v->type = type;
+                               v->where_set = prog;
+                               *perr |= Eretry;
+                       }
+               } else if (!type_compat(type, v->type, rules)) {
+                       type_err(c, "error: expected %1 but variable '%v' is %2", prog,
+                                type, rules, v->type);
+                       type_err(c, "info: this is where '%v' was set to %1", v->where_set,
+                                v->type, rules, NULL);
+               }
+               if (!v->global || v->frame_pos < 0)
+                       *perr |= Eruntime;
+               if (v->constant)
+                       *perr |= Econst;
+               return v->type;
        }
 
-       static struct value *linterp_exec(struct parse_context *c, struct exec *e,
-                                         struct type **typeret)
+###### interp exec cases
+       case Xvar:
        {
-               struct lrval ret = _interp_exec(c, e);
+               struct var *var = cast(var, e);
+               struct variable *v = var->var;
 
-               if (ret.lval)
-                       *typeret = ret.type;
-               else
-                       free_value(ret.type, &ret.rval);
-               return ret.lval;
+               v = v->merged;
+               lrv = var_value(c, v);
+               rvtype = v->type;
+               break;
        }
 
-       static struct lrval _interp_exec(struct parse_context *c, struct exec *e)
-       {
-               struct lrval ret;
-               struct value rv = {}, *lrv = NULL;
-               struct type *rvtype;
-
-               rvtype = ret.type = Tnone;
-               if (!e) {
-                       ret.lval = lrv;
-                       ret.rval = rv;
-                       return ret;
-               }
+###### ast functions
 
-               switch(e->type) {
-               case Xbinode:
-               {
-                       struct binode *b = cast(binode, e);
-                       struct value left, right, *lleft;
-                       struct type *ltype, *rtype;
-                       ltype = rtype = Tnone;
-                       switch (b->op) {
-                       ## interp binode cases
-                       }
-                       free_value(ltype, &left);
-                       free_value(rtype, &right);
-                       break;
-               }
-               ## interp exec cases
-               }
-               ret.lval = lrv;
-               ret.rval = rv;
-               ret.type = rvtype;
-               return ret;
+       static void free_var(struct var *v)
+       {
+               free(v);
        }
 
+###### free exec cases
+       case Xvar: free_var(cast(var, e)); break;
+
 ### Complex types
 
 Now that we have the shape of the interpreter in place we can add some
 complex types and connected them in to the data structures and the
 different phases of parse, analyse, print, interpret.
 
-Thus far we have arrays and structs.
+Being "complex" the language will naturally have syntax to access
+specifics of objects of these types.  These will fit into the grammar as
+"Terms" which are the things that are combined with various operators to
+form an "Expression".  Where a Term is formed by some operation on another
+Term, the subordinate Term will always come first, so for example a
+member of an array will be expressed as the Term for the array followed
+by an index in square brackets.  The strict rule of using postfix
+operations makes precedence irrelevant within terms.  To provide a place
+to put the grammar for terms of each type, we will start out by
+introducing the "Term" grammar production, with contains at least a
+simple "Value" (to be explained later).
+
+We also take this opportunity to introduce the "ExpressionsList" which
+is a simple comma-separated list of expressions - it may be used in
+various places.
+
+###### declare terminals
+       $TERM ,
+
+###### Grammar
+       $*exec
+       Term ->  Value ${ $0 = $<1; }$
+       | Variable ${ $0 = $<1; }$
+       ## term grammar
+
+       $*binode
+       ExpressionList -> ExpressionList , Expression ${
+               $0 = new(binode);
+               $0->op = List;
+               $0->left = $<1;
+               $0->right = $<3;
+       }$
+       | Expression ${
+               $0 = new(binode);
+               $0->op = List;
+               $0->left = NULL;
+               $0->right = $<1;
+       }$
+
+Thus far the complex types we have are arrays, structs, functions and
+references.
 
 #### Arrays
 
@@ -1621,18 +2473,18 @@ Arrays can be declared by giving a size and a type, as `[size]type' so
 size can be either a literal number, or a named constant.  Some day an
 arbitrary expression will be supported.
 
-As a formal parameter to a function, the array can be declared with a
-new variable as the size: `name:[size::number]string`.  The `size`
-variable is set to the size of the array and must be a constant.  As
-`number` is the only supported type, it can be left out:
-`name:[size::]string`.
+As a formal parameter to a function, the array can be declared with
+unknown size `name:[]string`.  This is currently only supported for the
+"argv" parameter to "main" but will be extended more generally in a
+later version of the language.  The length of this array - or any array
+- can be found with the "[]" postfix operator.
 
-Arrays cannot be assigned.  When pointers are introduced we will also
-introduce array slices which can refer to part or all of an array -
-the assignment syntax will create a slice.  For now, an array can only
-ever be referenced by the name it is declared with.  It is likely that
-a "`copy`" primitive will eventually be define which can be used to
-make a copy of an array with controllable recursive depth.
+Arrays cannot be assigned.  When reference are extend to allow array
+slices which can refer to part or all of an array the assignment
+syntax will create a slice.  For now, an array can only ever be
+referenced by the name it is declared with.  It is likely that a
+"`copy`" primitive will eventually be defined which can be used to make a
+copy of an array with controllable recursive depth.
 
 For now we have two sorts of array, those with fixed size either because
 it is given as a literal number or because it is a struct member (which
@@ -1661,25 +2513,37 @@ with a const size by whether they are prepared at parse time or not.
 
 ###### value functions
 
-       static void array_prepare_type(struct parse_context *c, struct type *type,
+       static int array_prepare_type(struct parse_context *c, struct type *type,
                                       int parse_time)
        {
                struct value *vsize;
                mpz_t q;
-               if (!type->array.vsize || type->array.static_size)
-                       return;
-
-               vsize = var_value(c, type->array.vsize);
-               mpz_init(q);
-               mpz_tdiv_q(q, mpq_numref(vsize->num), mpq_denref(vsize->num));
-               type->array.size = mpz_get_si(q);
-               mpz_clear(q);
+               if (type->array.static_size)
+                       return 1;       // NOTEST - guard against reentry
+               if (type->array.unspec && parse_time)
+                       return 1;       // NOTEST - unspec is still incomplete
+               if (parse_time && type->array.vsize && !type->array.vsize->global)
+                       return 1;       // NOTEST - should be impossible
 
-               if (parse_time) {
-                       type->array.static_size = 1;
-                       type->size = type->array.size * type->array.member->size;
-                       type->align = type->array.member->align;
+               if (type->array.vsize) {
+                       vsize = var_value(c, type->array.vsize);
+                       if (!vsize)
+                               return 1;       // NOTEST - should be impossible
+                       mpz_init(q);
+                       mpz_tdiv_q(q, mpq_numref(vsize->num), mpq_denref(vsize->num));
+                       type->array.size = mpz_get_si(q);
+                       mpz_clear(q);
                }
+               if (!parse_time)
+                       return 1;
+               if (type->array.member->size <= 0)
+                       return 0;       // NOTEST - error caught before here
+
+               type->array.static_size = 1;
+               type->size = type->array.size * type->array.member->size;
+               type->align = type->array.member->align;
+
+               return 1;
        }
 
        static void array_init(struct type *type, struct value *val)
@@ -1688,9 +2552,9 @@ with a const size by whether they are prepared at parse time or not.
                void *ptr = val->ptr;
 
                if (!val)
-                       return;
+                       return;                         // NOTEST
                if (!type->array.static_size) {
-                       val->array = calloc(type->array.size, 
+                       val->array = calloc(type->array.size,
                                            type->array.member->size);
                        ptr = val->array;
                }
@@ -1717,20 +2581,17 @@ with a const size by whether they are prepared at parse time or not.
                        free(ptr);
        }
 
-       static int array_compat(struct type *require, struct type *have)
+       static int array_compat(struct type *require, struct type *have,
+                               enum val_rules rules)
        {
                if (have->compat != require->compat)
                        return 0;
                /* Both are arrays, so we can look at details */
                if (!type_compat(require->array.member, have->array.member, 0))
                        return 0;
-               if (have->array.unspec && require->array.unspec) {
-                       if (have->array.vsize && require->array.vsize &&
-                           have->array.vsize != require->array.vsize)
-                               /* sizes might not be the same */
-                               return 0;
-                       return 1;
-               }
+               if (have->array.unspec && require->array.unspec &&
+                   have->array.size != require->array.size)
+                       return 0;       // NOTEST
                if (have->array.unspec || require->array.unspec)
                        return 1;
                if (require->array.vsize == NULL && have->array.vsize == NULL)
@@ -1746,8 +2607,10 @@ with a const size by whether they are prepared at parse time or not.
                        struct binding *b = type->array.vsize->name;
                        fprintf(f, "%.*s%s]", b->name.len, b->name.txt,
                                type->array.unspec ? "::" : "");
-               } else
+               } else if (type->array.size)
                        fprintf(f, "%d]", type->array.size);
+               else
+                       fprintf(f, "]");
                type_print(type->array.member, f);
        }
 
@@ -1769,18 +2632,16 @@ with a const size by whether they are prepared at parse time or not.
        | [ NUMBER ] Type ${ {
                char tail[3];
                mpq_t num;
-               struct text noname = { "", 0 };
                struct type *t;
+               int elements = 0;
 
-               $0 = t = add_type(c, noname, &array_prototype);
-               t->array.member = $<4;
-               t->array.vsize = NULL;
                if (number_parse(num, tail, $2.txt) == 0)
                        tok_err(c, "error: unrecognised number", &$2);
-               else if (tail[0])
+               else if (tail[0]) {
                        tok_err(c, "error: unsupported number suffix", &$2);
-               else {
-                       t->array.size = mpz_get_ui(mpq_numref(num));
+                       mpq_clear(num);
+               } else {
+                       elements = mpz_get_ui(mpq_numref(num));
                        if (mpz_cmp_ui(mpq_denref(num), 1) != 0) {
                                tok_err(c, "error: array size must be an integer",
                                        &$2);
@@ -1789,54 +2650,43 @@ with a const size by whether they are prepared at parse time or not.
                                        &$2);
                        mpq_clear(num);
                }
-               t->array.static_size = 1;
-               t->size = t->array.size * t->array.member->size;
-               t->align = t->array.member->align;
+
+               $0 = t = add_anon_type(c, &array_prototype, "array[%d]", elements );
+               t->array.size = elements;
+               t->array.member = $<4;
+               t->array.vsize = NULL;
        } }$
 
        | [ IDENTIFIER ] Type ${ {
                struct variable *v = var_ref(c, $2.txt);
-               struct text noname = { "", 0 };
 
                if (!v)
                        tok_err(c, "error: name undeclared", &$2);
                else if (!v->constant)
                        tok_err(c, "error: array size must be a constant", &$2);
 
-               $0 = add_type(c, noname, &array_prototype);
+               $0 = add_anon_type(c, &array_prototype, "array[%.*s]", $2.txt.len, $2.txt.txt);
                $0->array.member = $<4;
                $0->array.size = 0;
                $0->array.vsize = v;
        } }$
 
-###### Grammar
-       $*type
-       OptType -> Type ${ $0 = $<1; }$
-               | ${ $0 = NULL; }$
-
 ###### formal type grammar
 
-       | [ IDENTIFIER :: OptType ] Type ${ {
-               struct variable *v = var_decl(c, $ID.txt);
-               struct text noname = { "", 0 };
-
-               v->type = $<OT;
-               v->constant = 1;
-               if (!v->type)
-                       v->type = Tnum;
-               $0 = add_type(c, noname, &array_prototype);
-               $0->array.member = $<6;
+       | [ ] Type ${ {
+               $0 = add_anon_type(c, &array_prototype, "array[]");
+               $0->array.member = $<Type;
                $0->array.size = 0;
                $0->array.unspec = 1;
-               $0->array.vsize = v;
+               $0->array.vsize = NULL;
        } }$
 
 ###### Binode types
-       Index,
+       Index, Length,
 
-###### variable grammar
+###### term grammar
 
-       | Variable [ Expression ] ${ {
+       | Term [ Expression ] ${ {
                struct binode *b = new(binode);
                b->op = Index;
                b->left = $<1;
@@ -1844,6 +2694,13 @@ with a const size by whether they are prepared at parse time or not.
                $0 = b;
        } }$
 
+       | Term [ ] ${ {
+               struct binode *b = new(binode);
+               b->op = Length;
+               b->left = $<Term;
+               $0 = b;
+       } }$
+
 ###### print binode cases
        case Index:
                print_exec(b->left, -1, bracket);
@@ -1852,15 +2709,21 @@ with a const size by whether they are prepared at parse time or not.
                printf("]");
                break;
 
+       case Length:
+               print_exec(b->left, -1, bracket);
+               printf("[]");
+               break;
+
 ###### propagate binode cases
        case Index:
                /* left must be an array, right must be a number,
                 * result is the member type of the array
                 */
-               propagate_types(b->right, c, ok, Tnum, 0);
-               t = propagate_types(b->left, c, ok, NULL, rules & Rnoconstant);
+               propagate_types(b->right, c, perr_local, Tnum, 0);
+               t = propagate_types(b->left, c, perr, NULL, 0);
                if (!t || t->compat != array_compat) {
-                       type_err(c, "error: %1 cannot be indexed", prog, t, 0, NULL);
+                       type_err(c, "error: %1 cannot be indexed", prog, t, 0,
+                                NULL);
                        return NULL;
                } else {
                        if (!type_compat(type, t->array.member, rules)) {
@@ -1871,6 +2734,21 @@ with a const size by whether they are prepared at parse time or not.
                }
                break;
 
+       case Length:
+               /* left must be an array, result is a number
+                */
+               t = propagate_types(b->left, c, perr, NULL, 0);
+               if (!t || t->compat != array_compat) {
+                       type_err(c, "error: %1 cannot provide length", prog, t,
+                                0, NULL);
+                       return NULL;
+               }
+               if (!type_compat(type, Tnum, rules))
+                       type_err(c, "error: have %1 but need %2", prog,
+                                        Tnum, rules, type);
+               return Tnum;
+               break;
+
 ###### interp binode cases
        case Index: {
                mpz_t q;
@@ -1892,8 +2770,15 @@ with a const size by whether they are prepared at parse time or not.
                if (i >= 0 && i < ltype->array.size)
                        lrv = ptr + i * rvtype->size;
                else
-                       val_init(ltype->array.member, &rv);
+                       val_init(ltype->array.member, &rv); // UNSAFE
+               ltype = NULL;
+               break;
+       }
+       case Length: {
+               lleft = linterp_exec(c, b->left, &ltype);
+               mpq_set_ui(rv.num, ltype->array.size, 1);
                ltype = NULL;
+               rvtype = Tnum;
                break;
        }
 
@@ -1947,11 +2832,18 @@ function will be needed.
                        struct type *type;
                        struct value *init;
                        int offset;
-               } *fields;
+               } *fields; // This is created when field_list is analysed.
+               struct fieldlist {
+                       struct fieldlist *prev;
+                       struct field f;
+                       struct exec *init;
+               } *field_list; // This is created during parsing
        } structure;
 
 ###### type functions
        void (*print_type_decl)(struct type *type, FILE *f);
+       struct type *(*fieldref)(struct type *t, struct parse_context *c,
+                                struct fieldref *f, struct value **vp);
 
 ###### value functions
 
@@ -1963,7 +2855,7 @@ function will be needed.
                        struct value *v;
                        v = (void*) val->ptr + type->structure.fields[i].offset;
                        if (type->structure.fields[i].init)
-                               dup_value(type->structure.fields[i].type, 
+                               dup_value(type->structure.fields[i].type,
                                          type->structure.fields[i].init,
                                          v);
                        else
@@ -1982,6 +2874,15 @@ function will be needed.
                }
        }
 
+       static void free_fieldlist(struct fieldlist *f)
+       {
+               if (!f)
+                       return;
+               free_fieldlist(f->prev);
+               free_exec(f->init);
+               free(f);
+       }
+
        static void structure_free_type(struct type *t)
        {
                int i;
@@ -1991,6 +2892,88 @@ function will be needed.
                                           t->structure.fields[i].init);
                        }
                free(t->structure.fields);
+               free_fieldlist(t->structure.field_list);
+       }
+
+       static int structure_prepare_type(struct parse_context *c,
+                                         struct type *t, int parse_time)
+       {
+               int cnt = 0;
+               struct fieldlist *f;
+
+               if (!parse_time || t->structure.fields)
+                       return 1;
+
+               for (f = t->structure.field_list; f; f=f->prev) {
+                       enum prop_err perr;
+                       cnt += 1;
+
+                       if (f->f.type->size <= 0)
+                               return 0;
+                       if (f->f.type->prepare_type)
+                               f->f.type->prepare_type(c, f->f.type, parse_time);
+
+                       if (f->init == NULL)
+                               continue;
+                       do {
+                               perr = 0;
+                               propagate_types(f->init, c, &perr, f->f.type, 0);
+                       } while (perr & Eretry);
+                       if (perr & Efail)
+                               c->parse_error += 1;    // NOTEST
+               }
+
+               t->structure.nfields = cnt;
+               t->structure.fields = calloc(cnt, sizeof(struct field));
+               f = t->structure.field_list;
+               while (cnt > 0) {
+                       int a = f->f.type->align;
+                       cnt -= 1;
+                       t->structure.fields[cnt] = f->f;
+                       if (t->size & (a-1))
+                               t->size = (t->size | (a-1)) + 1;
+                       t->structure.fields[cnt].offset = t->size;
+                       t->size += ((f->f.type->size - 1) | (a-1)) + 1;
+                       if (a > t->align)
+                               t->align = a;
+
+                       if (f->init && !c->parse_error) {
+                               struct value vl = interp_exec(c, f->init, NULL);
+                               t->structure.fields[cnt].init =
+                                       global_alloc(c, f->f.type, NULL, &vl);
+                       }
+
+                       f = f->prev;
+               }
+               return 1;
+       }
+
+       static int find_struct_index(struct type *type, struct text field)
+       {
+               int i;
+               for (i = 0; i < type->structure.nfields; i++)
+                       if (text_cmp(type->structure.fields[i].name, field) == 0)
+                               return i;
+               return IndexInvalid;
+       }
+
+       static struct type *structure_fieldref(struct type *t, struct parse_context *c,
+                                              struct fieldref *f, struct value **vp)
+       {
+               if (f->index == IndexUnknown) {
+                       f->index = find_struct_index(t, f->name);
+                       if (f->index < 0)
+                               type_err(c, "error: cannot find requested field in %1",
+                                        f->left, t, 0, NULL);
+               }
+               if (f->index < 0)
+                       return NULL;
+               if (vp) {
+                       struct value *v = *vp;
+                       v = (void*)v->ptr + t->structure.fields[f->index].offset;
+                       *vp = v;
+               }
+               return t->structure.fields[f->index].type;
        }
 
        static struct type structure_prototype = {
@@ -1998,6 +2981,8 @@ function will be needed.
                .free = structure_free,
                .free_type = structure_free_type,
                .print_type_decl = structure_print_type,
+               .prepare_type = structure_prepare_type,
+               .fieldref = structure_fieldref,
        };
 
 ###### exec type
@@ -2010,6 +2995,7 @@ function will be needed.
                int index;
                struct text name;
        };
+       enum { IndexUnknown = -1, IndexInvalid = -2 };
 
 ###### free exec cases
        case Xfieldref:
@@ -2018,15 +3004,15 @@ function will be needed.
                break;
 
 ###### declare terminals
-       $TERM struct .
+       $TERM struct
 
-###### variable grammar
+###### term grammar
 
-       | Variable . IDENTIFIER ${ {
+       | Term . IDENTIFIER ${ {
                struct fieldref *fr = new_pos(fieldref, $2);
                fr->left = $<1;
                fr->name = $3.txt;
-               fr->index = -2;
+               fr->index = IndexUnknown;
                $0 = fr;
        } }$
 
@@ -2040,41 +3026,22 @@ function will be needed.
                break;
        }
 
-###### ast functions
-       static int find_struct_index(struct type *type, struct text field)
-       {
-               int i;
-               for (i = 0; i < type->structure.nfields; i++)
-                       if (text_cmp(type->structure.fields[i].name, field) == 0)
-                               return i;
-               return -1;
-       }
-
 ###### propagate exec cases
 
        case Xfieldref:
        {
                struct fieldref *f = cast(fieldref, prog);
-               struct type *st = propagate_types(f->left, c, ok, NULL, 0);
+               struct type *st = propagate_types(f->left, c, perr, NULL, 0);
 
-               if (!st)
-                       type_err(c, "error: unknown type for field access", f->left,
-                                NULL, 0, NULL);
-               else if (st->init != structure_init)
-                       type_err(c, "error: field reference attempted on %1, not a struct",
+               if (!st || !st->fieldref)
+                       type_err(c, "error: field reference on %1 is not supported",
                                 f->left, st, 0, NULL);
-               else if (f->index == -2) {
-                       f->index = find_struct_index(st, f->name);
-                       if (f->index < 0)
-                               type_err(c, "error: cannot find requested field in %1",
-                                        f->left, st, 0, NULL);
-               }
-               if (f->index >= 0) {
-                       struct type *ft = st->structure.fields[f->index].type;
-                       if (!type_compat(type, ft, rules))
+               else {
+                       t = st->fieldref(st, c, f, NULL);
+                       if (t && !type_compat(type, t, rules))
                                type_err(c, "error: have %1 but need %2", prog,
-                                        ft, rules, type);
-                       return ft;
+                                        t, rules, type);
+                       return t;
                }
                break;
        }
@@ -2085,105 +3052,81 @@ function will be needed.
                struct fieldref *f = cast(fieldref, e);
                struct type *ltype;
                struct value *lleft = linterp_exec(c, f->left, &ltype);
-               lrv = (void*)lleft->ptr + ltype->structure.fields[f->index].offset;
-               rvtype = ltype->structure.fields[f->index].type;
+               lrv = lleft;
+               rvtype = ltype->fieldref(ltype, c, f, &lrv);
                break;
        }
 
-###### ast
-       struct fieldlist {
-               struct fieldlist *prev;
-               struct field f;
-       };
+###### top level grammar
+       $*type
+       StructName -> IDENTIFIER ${ {
+               struct type *t = find_type(c, $ID.txt);
 
-###### ast functions
-       static void free_fieldlist(struct fieldlist *f)
-       {
-               if (!f)
-                       return;
-               free_fieldlist(f->prev);
-               if (f->f.init) {
-                       free_value(f->f.type, f->f.init);
-                       free(f->f.init);
+               if (t && t->size >= 0) {
+                       tok_err(c, "error: type already declared", &$ID);
+                       tok_err(c, "info: this is location of declaration",
+                               &t->first_use);
+                       t = NULL;
                }
-               free(f);
-       }
+               if (!t)
+                       t = add_type(c, $ID.txt, NULL);
+               t->first_use = $ID;
+               $0 = t;
+       } }$
+       $void
+       DeclareStruct -> struct StructName FieldBlock Newlines ${ {
+               struct type *t = $<SN;
+               struct type tmp = *t;
 
-###### top level grammar
-       DeclareStruct -> struct IDENTIFIER FieldBlock Newlines ${ {
-                       struct type *t =
-                               add_type(c, $2.txt, &structure_prototype);
-                       int cnt = 0;
-                       struct fieldlist *f;
-
-                       for (f = $3; f; f=f->prev)
-                               cnt += 1;
-
-                       t->structure.nfields = cnt;
-                       t->structure.fields = calloc(cnt, sizeof(struct field));
-                       f = $3;
-                       while (cnt > 0) {
-                               int a = f->f.type->align;
-                               cnt -= 1;
-                               t->structure.fields[cnt] = f->f;
-                               if (t->size & (a-1))
-                                       t->size = (t->size | (a-1)) + 1;
-                               t->structure.fields[cnt].offset = t->size;
-                               t->size += ((f->f.type->size - 1) | (a-1)) + 1;
-                               if (a > t->align)
-                                       t->align = a;
-                               f->f.init = NULL;
-                               f = f->prev;
-                       }
-               } }$
+               *t = structure_prototype;
+               t->name = tmp.name;
+               t->next = tmp.next;
+               t->first_use = tmp.first_use;
+
+               t->structure.field_list = $<FB;
+       } }$
 
        $*fieldlist
        FieldBlock -> { IN OptNL FieldLines OUT OptNL } ${ $0 = $<FL; }$
-               | { SimpleFieldList } ${ $0 = $<SFL; }$
-               | IN OptNL FieldLines OUT ${ $0 = $<FL; }$
-               | SimpleFieldList EOL ${ $0 = $<SFL; }$
+       | { SimpleFieldList } ${ $0 = $<SFL; }$
+       | IN OptNL FieldLines OUT ${ $0 = $<FL; }$
+       | SimpleFieldList EOL ${ $0 = $<SFL; }$
 
        FieldLines -> SimpleFieldList Newlines ${ $0 = $<SFL; }$
-               | FieldLines SimpleFieldList Newlines ${
-                       $SFL->prev = $<FL;
-                       $0 = $<SFL;
-               }$
+       | FieldLines SimpleFieldList Newlines ${ {
+               struct fieldlist *f = $<SFL;
+
+               if (f) {
+                       $0 = f;
+                       while (f->prev)
+                               f = f->prev;
+                       f->prev = $<FL;
+               } else
+                       $0 = $<FL;
+       } }$
 
        SimpleFieldList -> Field ${ $0 = $<F; }$
-               | SimpleFieldList ; Field ${
-                       $F->prev = $<SFL;
-                       $0 = $<F;
-               }$
-               | SimpleFieldList ; ${
-                       $0 = $<SFL;
-               }$
-               | ERROR ${ tok_err(c, "Syntax error in struct field", &$1); }$
+       | SimpleFieldList ; Field ${
+               $F->prev = $<SFL;
+               $0 = $<F;
+       }$
+       | SimpleFieldList ; ${
+               $0 = $<SFL;
+       }$
+       | ERROR ${ tok_err(c, "Syntax error in struct field", &$1); }$
 
        Field -> IDENTIFIER : Type = Expression ${ {
-                       int ok;
-
-                       $0 = calloc(1, sizeof(struct fieldlist));
-                       $0->f.name = $1.txt;
-                       $0->f.type = $<3;
-                       $0->f.init = NULL;
-                       do {
-                               ok = 1;
-                               propagate_types($<5, c, &ok, $3, 0);
-                       } while (ok == 2);
-                       if (!ok)
-                               c->parse_error = 1;
-                       else {
-                               struct value vl = interp_exec(c, $5, NULL);
-                               $0->f.init = global_alloc(c, $0->f.type, NULL, &vl);
-                       }
-               } }$
-               | IDENTIFIER : Type ${
-                       $0 = calloc(1, sizeof(struct fieldlist));
-                       $0->f.name = $1.txt;
-                       $0->f.type = $<3;
-                       if ($0->f.type->prepare_type)
-                               $0->f.type->prepare_type(c, $0->f.type, 1);
-               }$
+               $0 = calloc(1, sizeof(struct fieldlist));
+               $0->f.name = $ID.txt;
+               $0->f.type = $<Type;
+               $0->f.init = NULL;
+               $0->init = $<Expr;
+       } }$
+       | IDENTIFIER : Type ${
+               $0 = calloc(1, sizeof(struct fieldlist));
+               $0->f.name = $ID.txt;
+               $0->f.type = $<Type;
+       }$
 
 ###### forward decls
        static void structure_print_type(struct type *t, FILE *f);
@@ -2203,453 +3146,784 @@ function will be needed.
                                fprintf(f, " = ");
                                if (fl->type == Tstr)
                                        fprintf(f, "\"");
-                               print_value(fl->type, fl->init);
+                               print_value(fl->type, fl->init, f);
                                if (fl->type == Tstr)
                                        fprintf(f, "\"");
                        }
-                       printf("\n");
+                       fprintf(f, "\n");
+               }
+       }
+
+###### print type decls
+       {
+               struct type *t;
+               int target = -1;
+
+               while (target != 0) {
+                       int i = 0;
+                       for (t = context.typelist; t ; t=t->next)
+                               if (!t->anon && t->print_type_decl &&
+                                   !t->check_args) {
+                                       i += 1;
+                                       if (i == target)
+                                               break;
+                               }
+
+                       if (target == -1) {
+                               target = i;
+                       } else {
+                               t->print_type_decl(t, stdout);
+                               target -= 1;
+                       }
+               }
+       }
+
+#### References
+
+References, or pointers, are values that refer to another value.  They
+can only refer to a type that is named, which excludes arrays or other
+references.  As these can be included in a struct which is named, it is
+still possible to reference an array or reference - though indirectly.
+
+References are potentially dangerous as they might refer to some
+variable which no longer exists - either because a stack frame
+containing it has been discarded or because the value was allocated on
+the heap and has now been free.  Ocean does not yet provide any
+protection against these problems.  It will in due course.
+
+With references comes the opportunity and the need to explicitly
+allocate values on the "heap" and to free them.  We currently provide
+fairly basic support for this.
+
+Reference make use of the `@` symbol in various ways.  A type that starts
+with `@` is a reference to whatever follows.  A reference value
+followed by an `@` acts as the referred value, though the `@` is often
+not needed.  Finally, an expression that starts with `@` is a special
+reference related expression.  Some examples might help.
+
+##### Example: Reference examples
+
+       struct foo
+               a: number
+               b: string
+       ref: @foo
+       bar: foo
+       bar.number = 23; bar.string = "hello"
+       baz: foo
+       ref = bar
+       baz = @ref
+       baz.a = ref.a * 2
+
+       ref = @new()
+       ref@ = baz
+       @free = ref
+       ref = @nil
+
+Obviously this is very contrived.  `ref` is a reference to a `foo` which
+is initially set to refer to the value stored in `bar` - no extra syntax
+is needed to "Take the address of" `bar` - the fact that `ref` is a
+reference means that only the address make sense.
+
+When `ref.a` is accessed, that is whatever value is stored in `bar.a`.
+The same syntax is used for accessing fields both in structs and in
+references to structs.  It would be correct to use `ref@.a`, but not
+necessary.
+
+`@new()` creates an object of whatever type is needed for the program to
+by type-correct.  In future iterations of Ocean, a constructor will
+access arguments, so the the syntax now looks like a function call.
+`@free` can be assigned any reference that was returned by `@new()`, and
+it will be freed.  `@nil` is a value of whatever reference type is
+appropriate, and is stable and never the address of anything in the heap
+or on the stack.  A reference can be assigned `nil` or compared against
+that value.
+
+###### declare terminals
+       $TERM @
+
+###### type union fields
+
+       struct {
+               struct type *referent;
+       } reference;
+
+###### value union fields
+       struct value *ref;
+
+###### value functions
+
+       static void reference_print_type(struct type *t, FILE *f)
+       {
+               fprintf(f, "@");
+               type_print(t->reference.referent, f);
+       }
+
+       static int reference_cmp(struct type *tl, struct type *tr,
+                                struct value *left, struct value *right)
+       {
+               return left->ref == right->ref ? 0 : 1;
+       }
+
+       static void reference_dup(struct type *t,
+                                 struct value *vold, struct value *vnew)
+       {
+               vnew->ref = vold->ref;
+       }
+
+       static void reference_free(struct type *t, struct value *v)
+       {
+               /* Nothing to do here */
+       }
+
+       static int reference_compat(struct type *require, struct type *have,
+                                   enum val_rules rules)
+       {
+               if (rules & Rrefok)
+                       if (require->reference.referent == have)
+                               return 1;
+               if (have->compat != require->compat)
+                       return 0;
+               if (have->reference.referent != require->reference.referent)
+                       return 0;
+               return 1;
+       }
+
+       static int reference_test(struct type *type, struct value *val)
+       {
+               return val->ref != NULL;
+       }
+
+       static struct type *reference_fieldref(
+               struct type *t, struct parse_context *c, struct fieldref *f,
+               struct value **vp)
+       {
+               struct type *rt = t->reference.referent;
+
+               if (rt->fieldref) {
+                       if (vp)
+                               *vp = (*vp)->ref;
+                       return rt->fieldref(rt, c, f, vp);
+               }
+               type_err(c, "error: field reference on %1 is not supported",
+                                f->left, rt, 0, NULL);
+               return Tnone;
+       }
+
+       static struct type reference_prototype = {
+               .print_type = reference_print_type,
+               .cmp_eq = reference_cmp,
+               .dup = reference_dup,
+               .test = reference_test,
+               .free = reference_free,
+               .compat = reference_compat,
+               .fieldref = reference_fieldref,
+               .size = sizeof(void*),
+               .align = sizeof(void*),
+       };
+
+###### type grammar
+
+       | @ IDENTIFIER ${ {
+               struct type *t = find_type(c, $ID.txt);
+               if (!t) {
+                       t = add_type(c, $ID.txt, NULL);
+                       t->first_use = $ID;
+               }
+               $0 = find_anon_type(c, &reference_prototype, "@%.*s",
+                                   $ID.txt.len, $ID.txt.txt);
+               $0->reference.referent = t;
+       } }$
+
+###### core functions
+       static int text_is(struct text t, char *s)
+       {
+               return (strlen(s) == t.len &&
+                       strncmp(s, t.txt, t.len) == 0);
+       }
+
+###### exec type
+       Xref,
+
+###### ast
+       struct ref {
+               struct exec;
+               enum ref_func { RefNew, RefFree, RefNil } action;
+               struct type *reftype;
+               struct exec *right;
+       };
+
+###### SimpleStatement Grammar
+
+       | @ IDENTIFIER = Expression ${ {
+               struct ref *r = new_pos(ref, $ID);
+               // Must be "free"
+               if (!text_is($ID.txt, "free"))
+                       tok_err(c, "error: only \"@free\" makes sense here",
+                               &$ID);
+
+               $0 = r;
+               r->action = RefFree;
+               r->right = $<Exp;
+       } }$
+
+###### expression grammar
+       | @ IDENTIFIER ( ) ${
+               // Only 'new' valid here
+               if (!text_is($ID.txt, "new")) {
+                       tok_err(c, "error: Only reference function is \"@new()\"",
+                               &$ID);
+               } else {
+                       struct ref *r = new_pos(ref,$ID);
+                       $0 = r;
+                       r->action = RefNew;
+               }
+       }$
+       | @ IDENTIFIER ${
+               // Only 'nil' valid here
+               if (!text_is($ID.txt, "nil")) {
+                       tok_err(c, "error: Only reference value is \"@nil\"",
+                               &$ID);
+               } else {
+                       struct ref *r = new_pos(ref,$ID);
+                       $0 = r;
+                       r->action = RefNil;
+               }
+       }$
+
+###### print exec cases
+       case Xref: {
+               struct ref *r = cast(ref, e);
+               switch (r->action) {
+               case RefNew:
+                       printf("@new()"); break;
+               case RefNil:
+                       printf("@nil"); break;
+               case RefFree:
+                       do_indent(indent, "@free = ");
+                       print_exec(r->right, indent, bracket);
+                       break;
+               }
+               break;
+       }
+
+###### propagate exec cases
+       case Xref: {
+               struct ref *r = cast(ref, prog);
+               switch (r->action) {
+               case RefNew:
+                       if (type && type->free != reference_free) {
+                               type_err(c, "error: @new() can only be used with references, not %1",
+                                        prog, type, 0, NULL);
+                               return NULL;
+                       }
+                       if (type && !r->reftype) {
+                               r->reftype = type;
+                               *perr |= Eretry;
+                       }
+                       *perr |= Erval;
+                       return type;
+               case RefNil:
+                       if (type && type->free != reference_free)
+                               type_err(c, "error: @nil can only be used with reference, not %1",
+                                        prog, type, 0, NULL);
+                       if (type && !r->reftype) {
+                               r->reftype = type;
+                               *perr |= Eretry;
+                       }
+                       *perr |= Erval;
+                       return type;
+               case RefFree:
+                       t = propagate_types(r->right, c, perr_local, NULL, 0);
+                       if (t && t->free != reference_free)
+                               type_err(c, "error: @free can only be assigned a reference, not %1",
+                                        prog, t, 0, NULL);
+                       r->reftype = Tnone;
+                       return Tnone;
+               }
+               break;  // NOTEST
+       }
+
+###### interp exec cases
+       case Xref: {
+               struct ref *r = cast(ref, e);
+               switch (r->action) {
+               case RefNew:
+                       if (r->reftype)
+                               rv.ref = calloc(1, r->reftype->reference.referent->size);
+                       rvtype = r->reftype;
+                       break;
+               case RefNil:
+                       rv.ref = NULL;
+                       rvtype = r->reftype;
+                       break;
+               case RefFree:
+                       rv = interp_exec(c, r->right, &rvtype);
+                       free_value(rvtype->reference.referent, rv.ref);
+                       free(rv.ref);
+                       rvtype = Tnone;
+                       break;
                }
+               break;
+       }
+
+###### free exec cases
+       case Xref: {
+               struct ref *r = cast(ref, e);
+               free_exec(r->right);
+               free(r);
+               break;
        }
 
-###### print type decls
-       {
-               struct type *t;
-               int target = -1;
+###### Expressions: dereference
 
-               while (target != 0) {
-                       int i = 0;
-                       for (t = context.typelist; t ; t=t->next)
-                               if (t->print_type_decl) {
-                                       i += 1;
-                                       if (i == target)
-                                               break;
-                               }
+###### Binode types
+       Deref, AddressOf,
 
-                       if (target == -1) {
-                               target = i;
-                       } else {
-                               t->print_type_decl(t, stdout);
-                               target -= 1;
-                       }
-               }
-       }
+###### term grammar
+
+       | Term @ ${ {
+               struct binode *b = new(binode);
+               b->op = Deref;
+               b->left = $<Trm;
+               $0 = b;
+       } }$
+
+###### print binode cases
+       case Deref:
+               print_exec(b->left, -1, bracket);
+               printf("@");
+               break;
+       case AddressOf:
+               print_exec(b->left, -1, bracket);
+               break;
 
-### Functions
+###### propagate binode cases
+       case Deref:
+               /* left must be a reference, and we return what it refers to */
+               /* FIXME how can I pass the expected type down? */
+               t = propagate_types(b->left, c, perr, NULL, 0);
+               *perr &= ~Erval;
+               if (!t || t->free != reference_free)
+                       type_err(c, "error: Cannot dereference %1", b, t, 0, NULL);
+               else
+                       return t->reference.referent;
+               break;
+
+       case AddressOf:
+               /* left must be lval, we create reference to it */
+               if (!type || type->free != reference_free)
+                       t = propagate_types(b->left, c, perr, type, 0); // NOTEST impossible
+               else
+                       t = propagate_types(b->left, c, perr,
+                                           type->reference.referent, 0);
+               if (t)
+                       t = find_anon_type(c, &reference_prototype, "@%.*s",
+                                       t->name.len, t->name.txt);
+               return t;
+
+###### interp binode cases
+       case Deref:
+               left = interp_exec(c, b->left, &ltype);
+               lrv = left.ref;
+               rvtype = ltype->reference.referent;
+               break;
+
+       case AddressOf:
+               rv.ref = linterp_exec(c, b->left, &rvtype);
+               rvtype = find_anon_type(c, &reference_prototype, "@%.*s",
+                                       rvtype->name.len, rvtype->name.txt);
+               break;
 
-A function is a named chunk of code which can be passed parameters and
-can return results.  Each function has an implicit type which includes
-the set of parameters and the return value.  As yet these types cannot
-be declared separate from the function itself.
+#### Functions
 
-In fact, only one function is currently possible - `main`.  `main` is
-passed an array of strings together with the size of the array, and
-doesn't return anything.  The strings are command line arguments.
+A function is a chunk of code which can be passed parameters and can
+return results.  Each function has a type which includes the set of
+parameters and the return value.  As yet these types cannot be declared
+separately from the function itself.
 
-The parameters can be specified either in parentheses as a list, such as
+The parameters can be specified either in parentheses as a ';' separated
+list, such as
 
 ##### Example: function 1
 
-       func main(av:[ac::number]string)
+       func main(av:[]string; env:[]string)
                code block
 
-or as an indented list of one parameter per line
+or as an indented list of one parameter per line (though each line can
+be a ';' separated list)
 
 ##### Example: function 2
 
        func main
-               argv:[argc::number]string
+               argv:[]string
+               env:[]string
        do
                code block
 
-###### Binode types
-       Func, List,
+In the first case a return type can follow the parentheses after a colon,
+in the second it is given on a line starting with the word `return`.
 
-###### Grammar
+##### Example: functions that return
 
-       $TERM func main
+       func add(a:number; b:number): number
+               code block
 
-       $*binode
-       MainFunction -> func main ( OpenScope Args ) Block Newlines ${
-                       $0 = new(binode);
-                       $0->op = Func;
-                       $0->left = reorder_bilist($<Ar);
-                       $0->right = $<Bl;
-                       var_block_close(c, CloseSequential);
-                       if (c->scope_stack && !c->parse_error) abort();
-               }$
-               | func main IN OpenScope OptNL Args OUT OptNL do Block Newlines ${
-                       $0 = new(binode);
-                       $0->op = Func;
-                       $0->left = reorder_bilist($<Ar);
-                       $0->right = $<Bl;
-                       var_block_close(c, CloseSequential);
-                       if (c->scope_stack && !c->parse_error) abort();
-               }$
-               | func main NEWLINE OpenScope OptNL do Block Newlines ${
-                       $0 = new(binode);
-                       $0->op = Func;
-                       $0->left = NULL;
-                       $0->right = $<Bl;
-                       var_block_close(c, CloseSequential);
-                       if (c->scope_stack && !c->parse_error) abort();
-               }$
+       func catenate
+               a: string
+               b: string
+       return string
+       do
+               code block
 
-       Args -> ${ $0 = NULL; }$
-               | Varlist ${ $0 = $<1; }$
-               | Varlist ; ${ $0 = $<1; }$
-               | Varlist NEWLINE ${ $0 = $<1; }$
+Rather than returning a type, the function can specify a set of local
+variables to return as a struct.  The values of these variables when the
+function exits will be provided to the caller.  For this the return type
+is replaced with a block of result declarations, either in parentheses
+or bracketed by `return` and `do`.
 
-       Varlist -> Varlist ; ArgDecl ${
-                       $0 = new(binode);
-                       $0->op = List;
-                       $0->left = $<Vl;
-                       $0->right = $<AD;
-               }$
-               | ArgDecl ${
-                       $0 = new(binode);
-                       $0->op = List;
-                       $0->left = NULL;
-                       $0->right = $<AD;
-               }$
+##### Example: functions returning multiple variables
 
-       $*var
-       ArgDecl -> IDENTIFIER : FormalType ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new(var);
-               $0->var = v;
-               v->type = $<FT;
-       } }$
+       func to_cartesian(rho:number; theta:number):(x:number; y:number)
+               x = .....
+               y = .....
 
-## Executables: the elements of code
+       func to_polar
+               x:number; y:number
+       return
+               rho:number
+               theta:number
+       do
+               rho = ....
+               theta = ....
 
-Each code element needs to be parsed, printed, analysed,
-interpreted, and freed.  There are several, so let's just start with
-the easy ones and work our way up.
+For constructing the lists we use a `List` binode, which will be
+further detailed when Expression Lists are introduced.
 
-### Values
+###### type union fields
 
-We have already met values as separate objects.  When manifest
-constants appear in the program text, that must result in an executable
-which has a constant value.  So the `val` structure embeds a value in
-an executable.
+       struct {
+               struct binode *params;
+               struct type *return_type;
+               struct variable *scope;
+               int inline_result;      // return value is at start of 'local'
+               int local_size;
+       } function;
 
-###### exec type
-       Xval,
+###### value union fields
+       struct exec *function;
 
-###### ast
-       struct val {
-               struct exec;
-               struct type *vtype;
-               struct value val;
-       };
+###### type functions
+       void (*check_args)(struct parse_context *c, enum prop_err *perr,
+                          struct type *require, struct exec *args);
 
-###### ast functions
-       struct val *new_val(struct type *T, struct token tk)
+###### value functions
+
+       static void function_free(struct type *type, struct value *val)
        {
-               struct val *v = new_pos(val, tk);
-               v->vtype = T;
-               return v;
+               free_exec(val->function);
+               val->function = NULL;
        }
 
-###### Grammar
-
-       $TERM True False
-
-       $*val
-       Value ->  True ${
-                       $0 = new_val(Tbool, $1);
-                       $0->val.bool = 1;
-                       }$
-               | False ${
-                       $0 = new_val(Tbool, $1);
-                       $0->val.bool = 0;
-                       }$
-               | NUMBER ${
-                       $0 = new_val(Tnum, $1);
-                       {
-                       char tail[3];
-                       if (number_parse($0->val.num, tail, $1.txt) == 0)
-                               mpq_init($0->val.num);
-                               if (tail[0])
-                                       tok_err(c, "error: unsupported number suffix",
-                                               &$1);
-                       }
-                       }$
-               | STRING ${
-                       $0 = new_val(Tstr, $1);
-                       {
-                       char tail[3];
-                       string_parse(&$1, '\\', &$0->val.str, tail);
-                       if (tail[0])
-                               tok_err(c, "error: unsupported string suffix",
-                                       &$1);
-                       }
-                       }$
-               | MULTI_STRING ${
-                       $0 = new_val(Tstr, $1);
-                       {
-                       char tail[3];
-                       string_parse(&$1, '\\', &$0->val.str, tail);
-                       if (tail[0])
-                               tok_err(c, "error: unsupported string suffix",
-                                       &$1);
-                       }
-                       }$
-
-###### print exec cases
-       case Xval:
+       static int function_compat(struct type *require, struct type *have,
+                                  enum val_rules rules)
        {
-               struct val *v = cast(val, e);
-               if (v->vtype == Tstr)
-                       printf("\"");
-               print_value(v->vtype, &v->val);
-               if (v->vtype == Tstr)
-                       printf("\"");
-               break;
+               // FIXME can I do anything here yet?
+               return 0;
        }
 
-###### propagate exec cases
-       case Xval:
+       static struct exec *take_addr(struct exec *e)
        {
-               struct val *val = cast(val, prog);
-               if (!type_compat(type, val->vtype, rules))
-                       type_err(c, "error: expected %1%r found %2",
-                                  prog, type, rules, val->vtype);
-               return val->vtype;
+               struct binode *rv = new(binode);
+               rv->op = AddressOf;
+               rv->left = e;
+               return rv;
        }
 
-###### interp exec cases
-       case Xval:
-               rvtype = cast(val, e)->vtype;
-               dup_value(rvtype, &cast(val, e)->val, &rv);
-               break;
-
-###### ast functions
-       static void free_val(struct val *v)
+       static void function_check_args(struct parse_context *c, enum prop_err *perr,
+                                       struct type *require, struct exec *args)
        {
-               if (v)
-                       free_value(v->vtype, &v->val);
-               free(v);
+               /* This should be 'compat', but we don't have a 'tuple' type to
+                * hold the type of 'args'
+                */
+               struct binode *arg = cast(binode, args);
+               struct binode *param = require->function.params;
+
+               while (param) {
+                       struct var *pv = cast(var, param->left);
+                       struct type *t = pv->var->type, *t2;
+                       if (!arg) {
+                               type_err(c, "error: insufficient arguments to function.",
+                                        args, NULL, 0, NULL);
+                               break;
+                       }
+                       *perr = 0;
+                       t2 = propagate_types(arg->left, c, perr, t, Rrefok);
+                       if (t->free == reference_free &&
+                           t->reference.referent == t2 &&
+                           !(*perr & Erval)) {
+                               arg->left = take_addr(arg->left);
+                       } else if (!(*perr & Efail) && !type_compat(t2, t, 0)) {
+                               type_err(c, "error: cannot pass rval when reference expected",
+                                        arg->left, NULL, 0, NULL);
+                       }
+                       param = cast(binode, param->right);
+                       arg = cast(binode, arg->right);
+               }
+               if (arg)
+                       type_err(c, "error: too many arguments to function.",
+                                args, NULL, 0, NULL);
        }
 
-###### free exec cases
-       case Xval: free_val(cast(val, e)); break;
-
-###### ast functions
-       // Move all nodes from 'b' to 'rv', reversing their order.
-       // In 'b' 'left' is a list, and 'right' is the last node.
-       // In 'rv', left' is the first node and 'right' is a list.
-       static struct binode *reorder_bilist(struct binode *b)
+       static void function_print(struct type *type, struct value *val, FILE *f)
        {
-               struct binode *rv = NULL;
+               fprintf(f, "\n");
+               print_exec(val->function, 1, 0);
+       }
 
-               while (b) {
-                       struct exec *t = b->right;
-                       b->right = rv;
-                       rv = b;
-                       if (b->left)
-                               b = cast(binode, b->left);
-                       else
-                               b = NULL;
-                       rv->left = t;
+       static void function_print_type_decl(struct type *type, FILE *f)
+       {
+               struct binode *b;
+               fprintf(f, "(");
+               for (b = type->function.params; b; b = cast(binode, b->right)) {
+                       struct variable *v = cast(var, b->left)->var;
+                       fprintf(f, "%.*s%s", v->name->name.len, v->name->name.txt,
+                               v->constant ? "::" : ":");
+                       type_print(v->type, f);
+                       if (b->right)
+                               fprintf(f, "; ");
+               }
+               fprintf(f, ")");
+               if (type->function.return_type != Tnone) {
+                       fprintf(f, ":");
+                       if (type->function.inline_result) {
+                               int i;
+                               struct type *t = type->function.return_type;
+                               fprintf(f, " (");
+                               for (i = 0; i < t->structure.nfields; i++) {
+                                       struct field *fl = t->structure.fields + i;
+                                       if (i)
+                                               fprintf(f, "; ");
+                                       fprintf(f, "%.*s:", fl->name.len, fl->name.txt);
+                                       type_print(fl->type, f);
+                               }
+                               fprintf(f, ")");
+                       } else
+                               type_print(type->function.return_type, f);
                }
-               return rv;
        }
 
-### Variables
+       static void function_free_type(struct type *t)
+       {
+               free_exec(t->function.params);
+       }
 
-Just as we used a `val` to wrap a value into an `exec`, we similarly
-need a `var` to wrap a `variable` into an exec.  While each `val`
-contained a copy of the value, each `var` holds a link to the variable
-because it really is the same variable no matter where it appears.
-When a variable is used, we need to remember to follow the `->merged`
-link to find the primary instance.
+       static struct type function_prototype = {
+               .size = sizeof(void*),
+               .align = sizeof(void*),
+               .free = function_free,
+               .compat = function_compat,
+               .check_args = function_check_args,
+               .print = function_print,
+               .print_type_decl = function_print_type_decl,
+               .free_type = function_free_type,
+       };
 
-###### exec type
-       Xvar,
+###### declare terminals
 
-###### ast
-       struct var {
-               struct exec;
-               struct variable *var;
-       };
+       $TERM func
 
 ###### Grammar
 
-       $TERM : ::
-
-       $*var
-       VariableDecl -> IDENTIFIER : ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
-               $0->var = v;
-               if (v)
-                       v->where_decl = $0;
-               else {
-                       v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
-       } }$
-           | IDENTIFIER :: ${ {
+       $*variable
+       FuncName -> IDENTIFIER ${ {
                struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
-               $0->var = v;
+               struct var *e = new_pos(var, $1);
+               e->var = v;
                if (v) {
-                       v->where_decl = $0;
-                       v->constant = 1;
+                       v->where_decl = e;
+                       v->where_set = e;
+                       $0 = v;
                } else {
                        v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
+                       e->var = v;
+                       type_err(c, "error: function '%v' redeclared",
+                               e, NULL, 0, NULL);
                        type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
+                               v->where_decl, NULL, 0, NULL);
+                       free_exec(e);
                }
        } }$
-           | IDENTIFIER : Type ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
-               $0->var = v;
-               if (v) {
-                       v->where_decl = $0;
-                       v->where_set = $0;
-                       v->type = $<Type;
-               } else {
-                       v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
+
+       $*binode
+       Args -> ArgsLine NEWLINE ${ $0 = $<AL; }$
+       | Args ArgsLine NEWLINE ${ {
+               struct binode *b = $<AL;
+               struct binode **bp = &b;
+               while (*bp)
+                       bp = (struct binode **)&(*bp)->left;
+               *bp = $<A;
+               $0 = b;
        } }$
-           | IDENTIFIER :: Type ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
+
+       ArgsLine -> ${ $0 = NULL; }$
+       | Varlist ${ $0 = $<1; }$
+       | Varlist ; ${ $0 = $<1; }$
+
+       Varlist -> Varlist ; ArgDecl ${
+               $0 = new_pos(binode, $2);
+               $0->op = List;
+               $0->left = $<Vl;
+               $0->right = $<AD;
+       }$
+       | ArgDecl ${
+               $0 = new(binode);
+               $0->op = List;
+               $0->left = NULL;
+               $0->right = $<AD;
+       }$
+
+       $*var
+       ArgDecl -> IDENTIFIER : FormalType ${ {
+               struct variable *v = var_decl(c, $ID.txt);
+               $0 = new_pos(var, $ID);
                $0->var = v;
-               if (v) {
-                       v->where_decl = $0;
-                       v->where_set = $0;
-                       v->type = $<Type;
-                       v->constant = 1;
-               } else {
-                       v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
+               v->where_decl = $0;
+               v->where_set = $0;
+               v->type = $<FT;
+       } }$
+
+##### Function calls
+
+A function call can appear either as an expression or as a statement.
+We use a new 'Funcall' binode type to link the function with a list of
+arguments, form with the 'List' nodes.
+
+We have already seen the "Term" which is how a function call can appear
+in an expression.  To parse a function call into a statement we include
+it in the "SimpleStatement Grammar" which will be described later.
+
+###### Binode types
+       Funcall,
+
+###### term grammar
+       | Term ( ExpressionList ) ${ {
+               struct binode *b = new(binode);
+               b->op = Funcall;
+               b->left = $<T;
+               b->right = reorder_bilist($<EL);
+               $0 = b;
+       } }$
+       | Term ( ) ${ {
+               struct binode *b = new(binode);
+               b->op = Funcall;
+               b->left = $<T;
+               b->right = NULL;
+               $0 = b;
        } }$
 
-       $*exec
-       Variable -> IDENTIFIER ${ {
-               struct variable *v = var_ref(c, $1.txt);
-               $0 = new_pos(var, $1);
-               if (v == NULL) {
-                       /* This might be a label - allocate a var just in case */
-                       v = var_decl(c, $1.txt);
-                       if (v) {
-                               v->type = Tnone;
-                               v->where_decl = $0;
-                               v->where_set = $0;
-                       }
-               }
-               cast(var, $0)->var = v;
+###### SimpleStatement Grammar
+
+       | Term ( ExpressionList ) ${ {
+               struct binode *b = new(binode);
+               b->op = Funcall;
+               b->left = $<T;
+               b->right = reorder_bilist($<EL);
+               $0 = b;
        } }$
-       ## variable grammar
 
-###### print exec cases
-       case Xvar:
-       {
-               struct var *v = cast(var, e);
-               if (v->var) {
-                       struct binding *b = v->var->name;
-                       printf("%.*s", b->name.len, b->name.txt);
+###### print binode cases
+
+       case Funcall:
+               do_indent(indent, "");
+               print_exec(b->left, -1, bracket);
+               printf("(");
+               for (b = cast(binode, b->right); b; b = cast(binode, b->right)) {
+                       if (b->left) {
+                               printf(" ");
+                               print_exec(b->left, -1, bracket);
+                               if (b->right)
+                                       printf(",");
+                       }
                }
+               printf(")");
+               if (indent >= 0)
+                       printf("\n");
                break;
-       }
 
-###### format cases
-       case 'v':
-               if (loc && loc->type == Xvar) {
-                       struct var *v = cast(var, loc);
-                       if (v->var) {
-                               struct binding *b = v->var->name;
-                               fprintf(stderr, "%.*s", b->name.len, b->name.txt);
-                       } else
-                               fputs("???", stderr);   // NOTEST
-               } else
-                       fputs("NOTVAR", stderr);        // NOTEST
-               break;
+###### propagate binode cases
 
-###### propagate exec cases
+       case Funcall: {
+               /* Every arg must match formal parameter, and result
+                * is return type of function
+                */
+               struct binode *args = cast(binode, b->right);
+               struct var *v = cast(var, b->left);
 
-       case Xvar:
-       {
-               struct var *var = cast(var, prog);
-               struct variable *v = var->var;
-               if (!v) {
-                       type_err(c, "%d:BUG: no variable!!", prog, NULL, 0, NULL); // NOTEST
-                       return Tnone;                                   // NOTEST
-               }
-               if (v->merged)
-                       v = v->merged;
-               if (v->constant && (rules & Rnoconstant)) {
-                       type_err(c, "error: Cannot assign to a constant: %v",
-                                prog, NULL, 0, NULL);
-                       type_err(c, "info: name was defined as a constant here",
-                                v->where_decl, NULL, 0, NULL);
-                       return v->type;
-               }
-               if (v->type == Tnone && v->where_decl == prog)
-                       type_err(c, "error: variable used but not declared: %v",
-                                prog, NULL, 0, NULL);
-               if (v->type == NULL) {
-                       if (type && *ok != 0) {
-                               v->type = type;
-                               v->where_set = prog;
-                               *ok = 2;
-                       }
-                       return type;
-               }
-               if (!type_compat(type, v->type, rules)) {
-                       type_err(c, "error: expected %1%r but variable '%v' is %2", prog,
-                                type, rules, v->type);
-                       type_err(c, "info: this is where '%v' was set to %1", v->where_set,
-                                v->type, rules, NULL);
+               if (!v->var->type || v->var->type->check_args == NULL) {
+                       type_err(c, "error: attempt to call a non-function.",
+                                prog, NULL, 0, NULL);
+                       return NULL;
                }
-               if (!type)
-                       return v->type;
-               return type;
+               *perr |= Eruntime;
+               v->var->type->check_args(c, perr_local, v->var->type, args);
+               if (v->var->type->function.inline_result)
+                       *perr |= Emaycopy;
+               *perr |= Erval;
+               return v->var->type->function.return_type;
        }
 
-###### interp exec cases
-       case Xvar:
-       {
-               struct var *var = cast(var, e);
-               struct variable *v = var->var;
+###### interp binode cases
 
-               if (v->merged)
-                       v = v->merged;
-               lrv = var_value(c, v);
-               rvtype = v->type;
+       case Funcall: {
+               struct var *v = cast(var, b->left);
+               struct type *t = v->var->type;
+               void *oldlocal = c->local;
+               int old_size = c->local_size;
+               void *local = calloc(1, t->function.local_size);
+               struct value *fbody = var_value(c, v->var);
+               struct binode *arg = cast(binode, b->right);
+               struct binode *param = t->function.params;
+
+               while (param) {
+                       struct var *pv = cast(var, param->left);
+                       struct type *vtype = NULL;
+                       struct value val = interp_exec(c, arg->left, &vtype);
+                       struct value *lval;
+                       c->local = local; c->local_size = t->function.local_size;
+                       lval = var_value(c, pv->var);
+                       c->local = oldlocal; c->local_size = old_size;
+                       memcpy(lval, &val, vtype->size);
+                       param = cast(binode, param->right);
+                       arg = cast(binode, arg->right);
+               }
+               c->local = local; c->local_size = t->function.local_size;
+               if (t->function.inline_result && dtype) {
+                       _interp_exec(c, fbody->function, NULL, NULL);
+                       memcpy(dest, local, dtype->size);
+                       rvtype = ret.type = NULL;
+               } else
+                       rv = interp_exec(c, fbody->function, &rvtype);
+               c->local = oldlocal; c->local_size = old_size;
+               free(local);
                break;
        }
 
-###### ast functions
+## Complex executables: statements and expressions
 
-       static void free_var(struct var *v)
-       {
-               free(v);
-       }
+Now that we have types, values, variables, and most of the basic
+Terms which provide access to these, we can explore the more complex
+code that combine all of these to get useful work done.  Specifically
+statements and expressions.
 
-###### free exec cases
-       case Xvar: free_var(cast(var, e)); break;
+Expressions are various combinations of Terms.  We will use operator
+precedence to ensure correct parsing.  The simplest Expression is just a
+Term - others will follow.
+
+###### Grammar
+
+       $*exec
+       Expression -> Term ${ $0 = $<Term; }$
+       ## expression grammar
 
 ### Expressions: Conditional
 
@@ -2662,31 +3936,30 @@ first - to start the precedence list.
 Conditional expressions are of the form "value `if` condition `else`
 other_value".  They associate to the right, so everything to the right
 of `else` is part of an else value, while only a higher-precedence to
-the left of `if` is the if values.  Between `if` and `else` there is no
+the left of `if` is the if value.  Between `if` and `else` there is no
 room for ambiguity, so a full conditional expression is allowed in
 there.
 
 ###### Binode types
        CondExpr,
 
-###### Grammar
+###### declare terminals
 
        $LEFT if $$ifelse
-       ## expr precedence
 
-       $*exec
-       Expression -> Expression if Expression else Expression $$ifelse ${ {
-                       struct binode *b1 = new(binode);
-                       struct binode *b2 = new(binode);
-                       b1->op = CondExpr;
-                       b1->left = $<3;
-                       b1->right = b2;
-                       b2->op = CondExpr;
-                       b2->left = $<1;
-                       b2->right = $<5;
-                       $0 = b1;
-               } }$
-               ## expression grammar
+###### expression grammar
+
+       | Expression if Expression else Expression $$ifelse ${ {
+               struct binode *b1 = new(binode);
+               struct binode *b2 = new(binode);
+               b1->op = CondExpr;
+               b1->left = $<3;
+               b1->right = b2;
+               b2->op = CondExpr;
+               b2->left = $<1;
+               b2->right = $<5;
+               $0 = b1;
+       } }$
 
 ###### print binode cases
 
@@ -2708,9 +3981,9 @@ there.
                struct binode *b2 = cast(binode, b->right);
                struct type *t2;
 
-               propagate_types(b->left, c, ok, Tbool, 0);
-               t = propagate_types(b2->left, c, ok, type, Rnolabel);
-               t2 = propagate_types(b2->right, c, ok, type ?: t, Rnolabel);
+               propagate_types(b->left, c, perr_local, Tbool, 0);
+               t = propagate_types(b2->left, c, perr, type, 0);
+               t2 = propagate_types(b2->right, c, perr, type ?: t, 0);
                return t ?: t2;
        }
 
@@ -2729,59 +4002,40 @@ there.
 ### Expressions: Boolean
 
 The next class of expressions to use the `binode` will be Boolean
-expressions.  "`and then`" and "`or else`" are similar to `and` and `or`
-have same corresponding precendence.  The difference is that they don't
+expressions.  `and` and `or` are short-circuit operators that don't
 evaluate the second expression if not necessary.
 
 ###### Binode types
        And,
-       AndThen,
        Or,
-       OrElse,
        Not,
 
-###### expr precedence
+###### declare terminals
        $LEFT or
        $LEFT and
        $LEFT not
 
 ###### expression grammar
-               | Expression or Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = Or;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
-               | Expression or else Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = OrElse;
-                       b->left = $<1;
-                       b->right = $<4;
-                       $0 = b;
-               } }$
-
-               | Expression and Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = And;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
-               | Expression and then Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = AndThen;
-                       b->left = $<1;
-                       b->right = $<4;
-                       $0 = b;
-               } }$
-
-               | not Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = Not;
-                       b->right = $<2;
-                       $0 = b;
-               } }$
+       | Expression or Expression ${ {
+               struct binode *b = new(binode);
+               b->op = Or;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
+       | Expression and Expression ${ {
+               struct binode *b = new(binode);
+               b->op = And;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
+       | not Expression ${ {
+               struct binode *b = new(binode);
+               b->op = Not;
+               b->right = $<2;
+               $0 = b;
+       } }$
 
 ###### print binode cases
        case And:
@@ -2791,13 +4045,6 @@ evaluate the second expression if not necessary.
                print_exec(b->right, -1, bracket);
                if (bracket) printf(")");
                break;
-       case AndThen:
-               if (bracket) printf("(");
-               print_exec(b->left, -1, bracket);
-               printf(" and then ");
-               print_exec(b->right, -1, bracket);
-               if (bracket) printf(")");
-               break;
        case Or:
                if (bracket) printf("(");
                print_exec(b->left, -1, bracket);
@@ -2805,13 +4052,6 @@ evaluate the second expression if not necessary.
                print_exec(b->right, -1, bracket);
                if (bracket) printf(")");
                break;
-       case OrElse:
-               if (bracket) printf("(");
-               print_exec(b->left, -1, bracket);
-               printf(" or else ");
-               print_exec(b->right, -1, bracket);
-               if (bracket) printf(")");
-               break;
        case Not:
                if (bracket) printf("(");
                printf("not ");
@@ -2821,35 +4061,24 @@ evaluate the second expression if not necessary.
 
 ###### propagate binode cases
        case And:
-       case AndThen:
        case Or:
-       case OrElse:
        case Not:
                /* both must be Tbool, result is Tbool */
-               propagate_types(b->left, c, ok, Tbool, 0);
-               propagate_types(b->right, c, ok, Tbool, 0);
+               propagate_types(b->left, c, perr, Tbool, 0);
+               propagate_types(b->right, c, perr, Tbool, 0);
                if (type && type != Tbool)
                        type_err(c, "error: %1 operation found where %2 expected", prog,
                                   Tbool, 0, type);
+               *perr |= Erval;
                return Tbool;
 
 ###### interp binode cases
        case And:
-               rv = interp_exec(c, b->left, &rvtype);
-               right = interp_exec(c, b->right, &rtype);
-               rv.bool = rv.bool && right.bool;
-               break;
-       case AndThen:
                rv = interp_exec(c, b->left, &rvtype);
                if (rv.bool)
                        rv = interp_exec(c, b->right, NULL);
                break;
        case Or:
-               rv = interp_exec(c, b->left, &rvtype);
-               right = interp_exec(c, b->right, &rtype);
-               rv.bool = rv.bool || right.bool;
-               break;
-       case OrElse:
                rv = interp_exec(c, b->left, &rvtype);
                if (!rv.bool)
                        rv = interp_exec(c, b->right, NULL);
@@ -2888,7 +4117,7 @@ expression operator, and the `CMPop` non-terminal will match one of them.
        Eql,
        NEql,
 
-###### expr precedence
+###### declare terminals
        $LEFT < > <= >= == != CMPop
 
 ###### expression grammar
@@ -2903,12 +4132,12 @@ expression operator, and the `CMPop` non-terminal will match one of them.
 ###### Grammar
 
        $eop
-       CMPop ->   < ${ $0.op = Less; }$
-               |  > ${ $0.op = Gtr; }$
-               |  <= ${ $0.op = LessEq; }$
-               |  >= ${ $0.op = GtrEq; }$
-               |  == ${ $0.op = Eql; }$
-               |  != ${ $0.op = NEql; }$
+       CMPop ->  < ${ $0.op = Less; }$
+       |         > ${ $0.op = Gtr; }$
+       |         <= ${ $0.op = LessEq; }$
+       |         >= ${ $0.op = GtrEq; }$
+       |         == ${ $0.op = Eql; }$
+       |         != ${ $0.op = NEql; }$
 
 ###### print binode cases
 
@@ -2941,17 +4170,18 @@ expression operator, and the `CMPop` non-terminal will match one of them.
        case Eql:
        case NEql:
                /* Both must match but not be labels, result is Tbool */
-               t = propagate_types(b->left, c, ok, NULL, Rnolabel);
+               t = propagate_types(b->left, c, perr, NULL, 0);
                if (t)
-                       propagate_types(b->right, c, ok, t, 0);
+                       propagate_types(b->right, c, perr, t, 0);
                else {
-                       t = propagate_types(b->right, c, ok, NULL, Rnolabel);
-                       if (t)
-                               t = propagate_types(b->left, c, ok, t, 0);
+                       t = propagate_types(b->right, c, perr, NULL, 0); // NOTEST
+                       if (t)  // NOTEST
+                               t = propagate_types(b->left, c, perr, t, 0);    // NOTEST
                }
                if (!type_compat(type, Tbool, 0))
                        type_err(c, "error: Comparison returns %1 but %2 expected", prog,
                                    Tbool, rules, type);
+               *perr |= Erval;
                return Tbool;
 
 ###### interp binode cases
@@ -2979,12 +4209,19 @@ expression operator, and the `CMPop` non-terminal will match one of them.
                break;
        }
 
-### Expressions: The rest
+### Expressions: Arithmetic etc.
 
 The remaining expressions with the highest precedence are arithmetic,
-string concatenation, and string conversion.  String concatenation
+string concatenation, string conversion, and testing.  String concatenation
 (`++`) has the same precedence as multiplication and division, but lower
-than the uniary.
+than the unary.
+
+Testing comes in two forms.  A single question mark (`?`) is a unary
+operator which converts come types into Boolean.  The general meaning is
+"is this a valid value" and there will be more uses as the language
+develops.  A double question-mark (`??`) is a binary operator (Choose),
+with the same precedence as multiplication, which returns the LHS if it
+tests successfully, else returns the RHS.
 
 String conversion is a temporary feature until I get a better type
 system.  `$` is a prefix operator which expects a string and returns
@@ -2995,66 +4232,72 @@ absolute value and negation).  These have different operator names.
 
 We also have a 'Bracket' operator which records where parentheses were
 found.  This makes it easy to reproduce these when printing.  Possibly I
-should only insert brackets were needed for precedence.
+should only insert brackets were needed for precedence.  Putting
+parentheses around an expression converts it into a Term,
 
 ###### Binode types
        Plus, Minus,
        Times, Divide, Rem,
-       Concat,
-       Absolute, Negate,
+       Concat, Choose,
+       Absolute, Negate, Test,
        StringConv,
        Bracket,
 
-###### expr precedence
+###### declare terminals
        $LEFT + - Eop
-       $LEFT * / % ++ Top
-       $LEFT Uop $
+       $LEFT * / % ++ ?? Top
+       $LEFT Uop $ ?
        $TERM ( )
 
 ###### expression grammar
-               | Expression Eop Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = $2.op;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
+       | Expression Eop Expression ${ {
+               struct binode *b = new(binode);
+               b->op = $2.op;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
 
-               | Expression Top Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = $2.op;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
-
-               | ( Expression ) ${ {
-                       struct binode *b = new_pos(binode, $1);
-                       b->op = Bracket;
-                       b->right = $<2;
-                       $0 = b;
-               } }$
-               | Uop Expression ${ {
-                       struct binode *b = new(binode);
-                       b->op = $1.op;
-                       b->right = $<2;
-                       $0 = b;
-               } }$
-               | Value ${ $0 = $<1; }$
-               | Variable ${ $0 = $<1; }$
+       | Expression Top Expression ${ {
+               struct binode *b = new(binode);
+               b->op = $2.op;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
+
+       | Uop Expression ${ {
+               struct binode *b = new(binode);
+               b->op = $1.op;
+               b->right = $<2;
+               $0 = b;
+       } }$
+
+###### term grammar
+
+       | ( Expression ) ${ {
+               struct binode *b = new_pos(binode, $1);
+               b->op = Bracket;
+               b->right = $<2;
+               $0 = b;
+       } }$
+
+###### Grammar
 
        $eop
-       Eop ->    + ${ $0.op = Plus; }$
-               | - ${ $0.op = Minus; }$
+       Eop ->   + ${ $0.op = Plus; }$
+       |        - ${ $0.op = Minus; }$
 
-       Uop ->    + ${ $0.op = Absolute; }$
-               | - ${ $0.op = Negate; }$
-               | $ ${ $0.op = StringConv; }$
+       Uop ->   + ${ $0.op = Absolute; }$
+       |        - ${ $0.op = Negate; }$
+       |        $ ${ $0.op = StringConv; }$
+       |        ? ${ $0.op = Test; }$
 
-       Top ->    * ${ $0.op = Times; }$
-               | / ${ $0.op = Divide; }$
-               | % ${ $0.op = Rem; }$
-               | ++ ${ $0.op = Concat; }$
+       Top ->   * ${ $0.op = Times; }$
+       |        / ${ $0.op = Divide; }$
+       |        % ${ $0.op = Rem; }$
+       |        ++ ${ $0.op = Concat; }$
+       |        ?? ${ $0.op = Choose; }$
 
 ###### print binode cases
        case Plus:
@@ -3063,6 +4306,7 @@ should only insert brackets were needed for precedence.
        case Divide:
        case Concat:
        case Rem:
+       case Choose:
                if (bracket) printf("(");
                print_exec(b->left, indent, bracket);
                switch(b->op) {
@@ -3072,6 +4316,7 @@ should only insert brackets were needed for precedence.
                case Divide: fputs(" / ", stdout); break;
                case Rem:    fputs(" % ", stdout); break;
                case Concat: fputs(" ++ ", stdout); break;
+               case Choose: fputs(" ?? ", stdout); break;
                default: abort();       // NOTEST
                }                       // NOTEST
                print_exec(b->right, indent, bracket);
@@ -3080,20 +4325,23 @@ should only insert brackets were needed for precedence.
        case Absolute:
        case Negate:
        case StringConv:
+       case Test:
                if (bracket) printf("(");
                switch (b->op) {
                case Absolute:   fputs("+", stdout); break;
                case Negate:     fputs("-", stdout); break;
                case StringConv: fputs("$", stdout); break;
+               case Test:       fputs("?", stdout); break;
                default: abort();       // NOTEST
                }                       // NOTEST
                print_exec(b->right, indent, bracket);
                if (bracket) printf(")");
                break;
        case Bracket:
-               printf("(");
+               /* Avoid double brackets... */
+               if (!bracket) printf("(");
                print_exec(b->right, indent, bracket);
-               printf(")");
+               if (!bracket) printf(")");
                break;
 
 ###### propagate binode cases
@@ -3107,33 +4355,57 @@ should only insert brackets were needed for precedence.
        case Negate:
                /* as propagate_types ignores a NULL,
                 * unary ops fit here too */
-               propagate_types(b->left, c, ok, Tnum, 0);
-               propagate_types(b->right, c, ok, Tnum, 0);
+               propagate_types(b->left, c, perr, Tnum, 0);
+               propagate_types(b->right, c, perr, Tnum, 0);
                if (!type_compat(type, Tnum, 0))
                        type_err(c, "error: Arithmetic returns %1 but %2 expected", prog,
                                   Tnum, rules, type);
+               *perr |= Erval;
                return Tnum;
 
        case Concat:
                /* both must be Tstr, result is Tstr */
-               propagate_types(b->left, c, ok, Tstr, 0);
-               propagate_types(b->right, c, ok, Tstr, 0);
+               propagate_types(b->left, c, perr, Tstr, 0);
+               propagate_types(b->right, c, perr, Tstr, 0);
                if (!type_compat(type, Tstr, 0))
                        type_err(c, "error: Concat returns %1 but %2 expected", prog,
                                   Tstr, rules, type);
+               *perr |= Erval;
                return Tstr;
 
        case StringConv:
                /* op must be string, result is number */
-               propagate_types(b->left, c, ok, Tstr, 0);
+               propagate_types(b->left, c, perr, Tstr, 0);
                if (!type_compat(type, Tnum, 0))
                        type_err(c,
                          "error: Can only convert string to number, not %1",
                                prog, type, 0, NULL);
+               *perr |= Erval;
                return Tnum;
 
+       case Test:
+               /* LHS must support ->test, result is Tbool */
+               t = propagate_types(b->right, c, perr, NULL, 0);
+               if (!t || !t->test)
+                       type_err(c, "error: '?' requires a testable value, not %1",
+                                prog, t, 0, NULL);
+               *perr |= Erval;
+               return Tbool;
+
+       case Choose:
+               /* LHS and RHS must match and are returned. Must support
+                * ->test
+                */
+               t = propagate_types(b->left, c, perr, type, rules);
+               t = propagate_types(b->right, c, perr, t, rules);
+               if (t && t->test == NULL)
+                       type_err(c, "error: \"??\" requires a testable value, not %1",
+                                prog, t, 0, NULL);
+               *perr |= Erval;
+               return t;
+
        case Bracket:
-               return propagate_types(b->right, c, ok, type, 0);
+               return propagate_types(b->right, c, perr, type, rules);
 
 ###### interp binode cases
 
@@ -3195,7 +4467,7 @@ should only insert brackets were needed for precedence.
                rvtype = Tnum;
 
                struct text tx = right.str;
-               char tail[3];
+               char tail[3] = "";
                int neg = 0;
                if (tx.txt[0] == '-') {
                        neg = 1;
@@ -3210,6 +4482,20 @@ should only insert brackets were needed for precedence.
                        printf("Unsupported suffix: %.*s\n", tx.len, tx.txt);
 
                break;
+       case Test:
+               right = interp_exec(c, b->right, &rtype);
+               rvtype = Tbool;
+               rv.bool = !!rtype->test(rtype, &right);
+               break;
+       case Choose:
+               left = interp_exec(c, b->left, &ltype);
+               if (ltype->test(ltype, &left)) {
+                       rv = left;
+                       rvtype = ltype;
+                       ltype = NULL;
+               } else
+                       rv = interp_exec(c, b->right, &rvtype);
+               break;
 
 ###### value functions
 
@@ -3262,20 +4548,20 @@ contains simple statements.  So both of:
 
        if condition { a=b; print f }
 
-are valid.
-
-In either case the list is constructed from a `binode` list with
-`Block` as the operator.  When parsing the list it is most convenient
-to append to the end, so a list is a list and a statement.  When using
-the list it is more convenient to consider a list to be a statement
-and a list.  So we need a function to re-order a list.
-`reorder_bilist` serves this purpose.
+are valid.  In either case the list is constructed from a `binode` list
+with `Block` as the operator.
 
 The only stand-alone statement we introduce at this stage is `pass`
 which does nothing and is represented as a `NULL` pointer in a `Block`
 list.  Other stand-alone statements will follow once the infrastructure
 is in-place.
 
+As many statements will use binodes, we declare a binode pointer 'b' in
+the common header for all reductions to use.
+
+###### Parser: reduce
+       struct binode *b;
+
 ###### Binode types
        Block,
 
@@ -3285,99 +4571,88 @@ is in-place.
 
        $*binode
        Block -> { IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
-               | { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
-               | SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
-               | SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
-               | IN OptNL Statementlist OUT ${ $0 = $<Sl; }$
+       |        { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
+       |        SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
+       |        IN OptNL Statementlist OUT ${ $0 = $<Sl; }$
 
        OpenBlock -> OpenScope { IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
-               | OpenScope { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
-               | OpenScope SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
-               | OpenScope SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
-               | IN OpenScope OptNL Statementlist OUT ${ $0 = $<Sl; }$
+       |        OpenScope { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        OpenScope SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
+       |        OpenScope SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
+       |        IN OpenScope OptNL Statementlist OUT ${ $0 = $<Sl; }$
 
-       UseBlock -> { OpenScope IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
-               | { OpenScope SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
-               | IN OpenScope OptNL Statementlist OUT ${ $0 = $<Sl; }$
+       UseBlock -> { IN OpenScope OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
+       |        { OpenScope SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        IN OpenScope OptNL Statementlist OUT ${ $0 = $<Sl; }$
 
        ColonBlock -> { IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
-               | { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
-               | : SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
-               | : SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
-               | : IN OptNL Statementlist OUT ${ $0 = $<Sl; }$
+       |        { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        : SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
+       |        : SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
+       |        : IN OptNL Statementlist OUT ${ $0 = $<Sl; }$
 
        Statementlist -> ComplexStatements ${ $0 = reorder_bilist($<CS); }$
 
        ComplexStatements -> ComplexStatements ComplexStatement ${
-                       if ($2 == NULL) {
-                               $0 = $<1;
-                       } else {
-                               $0 = new(binode);
-                               $0->op = Block;
-                               $0->left = $<1;
-                               $0->right = $<2;
-                       }
-               }$
-               | ComplexStatement ${
-                       if ($1 == NULL) {
-                               $0 = NULL;
-                       } else {
-                               $0 = new(binode);
-                               $0->op = Block;
-                               $0->left = NULL;
-                               $0->right = $<1;
-                       }
-               }$
-
-       $*exec
-       ComplexStatement -> SimpleStatements Newlines ${
-                       $0 = reorder_bilist($<SS);
-                       }$
-               |  SimpleStatements ; Newlines ${
-                       $0 = reorder_bilist($<SS);
-                       }$
-               ## ComplexStatement Grammar
-
-       $*binode
-       SimpleStatements -> SimpleStatements ; SimpleStatement ${
+               if ($2 == NULL) {
+                       $0 = $<1;       // NOTEST - impossible
+               } else {
                        $0 = new(binode);
                        $0->op = Block;
                        $0->left = $<1;
-                       $0->right = $<3;
-                       }$
-               | SimpleStatement ${
+                       $0->right = $<2;
+               }
+       }$
+       | ComplexStatement ${
+               if ($1 == NULL) {
+                       $0 = NULL;      // NOTEST - impossible
+               } else {
                        $0 = new(binode);
                        $0->op = Block;
                        $0->left = NULL;
                        $0->right = $<1;
-                       }$
+               }
+       }$
+
+       $*exec
+       ComplexStatement -> SimpleStatements Newlines ${
+               $0 = reorder_bilist($<SS);
+       }$
+       |  SimpleStatements ; Newlines ${
+               $0 = reorder_bilist($<SS);
+       }$
+       ## ComplexStatement Grammar
+
+       $*binode
+       SimpleStatements -> SimpleStatements ; SimpleStatement ${
+               $0 = new(binode);
+               $0->op = Block;
+               $0->left = $<1;
+               $0->right = $<3;
+       }$
+       | SimpleStatement ${
+               $0 = new(binode);
+               $0->op = Block;
+               $0->left = NULL;
+               $0->right = $<1;
+       }$
 
        $TERM pass
+       $*exec
        SimpleStatement -> pass ${ $0 = NULL; }$
-               | ERROR ${ tok_err(c, "Syntax error in statement", &$1); }$
-               ## SimpleStatement Grammar
+       | ERROR ${ tok_err(c, "Syntax error in statement", &$1); }$
+       ## SimpleStatement Grammar
 
 ###### print binode cases
        case Block:
-               if (indent < 0) {
-                       // simple statement
-                       if (b->left == NULL)
-                               printf("pass");
-                       else
-                               print_exec(b->left, indent, bracket);
-                       if (b->right) {
-                               printf("; ");
-                               print_exec(b->right, indent, bracket);
-                       }
-               } else {
-                       // block, one per line
-                       if (b->left == NULL)
-                               do_indent(indent, "pass\n");
-                       else
-                               print_exec(b->left, indent, bracket);
-                       if (b->right)
-                               print_exec(b->right, indent, bracket);
-               }
+               // block, one per line
+               if (b->left == NULL)
+                       do_indent(indent, "pass\n");
+               else
+                       print_exec(b->left, indent, bracket);
+               if (b->right)
+                       print_exec(b->right, indent, bracket);
                break;
 
 ###### propagate binode cases
@@ -3393,14 +4668,21 @@ is in-place.
                struct binode *e;
 
                for (e = b; e; e = cast(binode, e->right)) {
-                       t = propagate_types(e->left, c, ok, NULL, rules);
-                       if ((rules & Rboolok) && t == Tbool)
+                       *perr |= *perr_local;
+                       *perr_local = 0;
+                       t = propagate_types(e->left, c, perr_local, NULL, rules);
+                       if ((rules & Rboolok) && (t == Tbool || t == Tnone))
+                               t = NULL;
+                       if (t == Tnone && e->right)
+                               /* Only the final statement *must* return a value
+                                * when not Rboolok
+                                */
                                t = NULL;
-                       if (t && t != Tnone && t != Tbool) {
+                       if (t) {
                                if (!type)
                                        type = t;
                                else if (t != type)
-                                       type_err(c, "error: expected %1%r, found %2",
+                                       type_err(c, "error: expected %1, found %2",
                                                 e->left, type, rules, t);
                        }
                }
@@ -3423,62 +4705,52 @@ is in-place.
 expressions and prints the values separated by spaces and terminated
 by a newline.  No control of formatting is possible.
 
-`print` faces the same list-ordering issue as blocks, and uses the
-same solution.
+`print` uses `ExpressionList` to collect the expressions and stores them
+on the left side of a `Print` binode unless there is a trailing comma
+when the list is stored on the `right` side and no trailing newline is
+printed.
 
 ###### Binode types
        Print,
 
-##### expr precedence
-       $TERM print ,
+##### declare terminals
+       $TERM print
 
 ###### SimpleStatement Grammar
 
        | print ExpressionList ${
-               $0 = reorder_bilist($<2);
-       }$
-       | print ExpressionList , ${
-               $0 = new(binode);
-               $0->op = Print;
-               $0->right = NULL;
-               $0->left = $<2;
-               $0 = reorder_bilist($0);
+               $0 = b = new_pos(binode, $1);
+               b->op = Print;
+               b->right = NULL;
+               b->left = reorder_bilist($<EL);
        }$
+       | print ExpressionList , ${ {
+               $0 = b = new_pos(binode, $1);
+               b->op = Print;
+               b->right = reorder_bilist($<EL);
+               b->left = NULL;
+       } }$
        | print ${
-               $0 = new(binode);
-               $0->op = Print;
-               $0->right = NULL;
+               $0 = b = new_pos(binode, $1);
+               b->op = Print;
+               b->left = NULL;
+               b->right = NULL;
        }$
 
-###### Grammar
-
-       $*binode
-       ExpressionList -> ExpressionList , Expression ${
-               $0 = new(binode);
-               $0->op = Print;
-               $0->left = $<1;
-               $0->right = $<3;
-               }$
-               | Expression ${
-                       $0 = new(binode);
-                       $0->op = Print;
-                       $0->left = NULL;
-                       $0->right = $<1;
-               }$
-
 ###### print binode cases
 
        case Print:
                do_indent(indent, "print");
-               while (b) {
-                       if (b->left) {
-                               printf(" ");
-                               print_exec(b->left, -1, bracket);
-                               if (b->right)
-                                       printf(",");
-                       }
-                       b = cast(binode, b->right);
+               b2 = cast(binode, b->left ?: b->right);
+               while (b2) {
+                       printf(" ");
+                       print_exec(b2->left, -1, bracket);
+                       if (b2->right)
+                               printf(",");
+                       b2 = cast(binode, b2->right);
                }
+               if (b->right)
+                       printf(",");
                if (indent >= 0)
                        printf("\n");
                break;
@@ -3487,30 +4759,33 @@ same solution.
 
        case Print:
                /* don't care but all must be consistent */
-               propagate_types(b->left, c, ok, NULL, Rnolabel);
-               propagate_types(b->right, c, ok, NULL, Rnolabel);
+               if (b->left)
+                       b = cast(binode, b->left);
+               else
+                       b = cast(binode, b->right);
+               while (b) {
+                       propagate_types(b->left, c, perr_local, NULL, 0);
+                       b = cast(binode, b->right);
+               }
                break;
 
 ###### interp binode cases
 
        case Print:
        {
-               char sep = 0;
-               int eol = 1;
-               for ( ; b; b = cast(binode, b->right))
-                       if (b->left) {
-                               if (sep)
-                                       putchar(sep);
-                               left = interp_exec(c, b->left, &ltype);
-                               print_value(ltype, &left);
-                               free_value(ltype, &left);
-                               if (b->right)
-                                       sep = ' ';
-                       } else if (sep)
-                               eol = 0;
-               ltype = Tnone;
-               if (eol)
+               struct binode *b2 = cast(binode, b->left);
+               if (!b2)
+                       b2 = cast(binode, b->right);
+               for (; b2; b2 = cast(binode, b2->right)) {
+                       left = interp_exec(c, b2->left, &ltype);
+                       print_value(ltype, &left, stdout);
+                       free_value(ltype, &left);
+                       if (b2->right)
+                               putchar(' ');
+               }
+               if (b->right == NULL)
                        printf("\n");
+               ltype = Tnone;
                break;
        }
 
@@ -3520,9 +4795,9 @@ An assignment will assign a value to a variable, providing it hasn't
 been declared as a constant.  The analysis phase ensures that the type
 will be correct so the interpreter just needs to perform the
 calculation.  There is a form of assignment which declares a new
-variable as well as assigning a value.  If a name is assigned before
-it is declared, and error will be raised as the name is created as
-`Tlabel` and it is illegal to assign to such names.
+variable as well as assigning a value.  If a name is used before
+it is declared, it is assumed to be a global constant which are allowed to
+be declared at any time.
 
 ###### Binode types
        Assign,
@@ -3532,39 +4807,40 @@ it is declared, and error will be raised as the name is created as
        $TERM =
 
 ###### SimpleStatement Grammar
-       | Variable = Expression ${
-                       $0 = new(binode);
-                       $0->op = Assign;
-                       $0->left = $<1;
-                       $0->right = $<3;
-               }$
+       | Term = Expression ${
+               $0 = b= new(binode);
+               b->op = Assign;
+               b->left = $<1;
+               b->right = $<3;
+       }$
        | VariableDecl = Expression ${
-                       $0 = new(binode);
-                       $0->op = Declare;
-                       $0->left = $<1;
-                       $0->right =$<3;
-               }$
+               $0 = b= new(binode);
+               b->op = Declare;
+               b->left = $<1;
+               b->right =$<3;
+       }$
 
        | VariableDecl ${
-                       if ($1->var->where_set == NULL) {
-                               type_err(c,
-                                        "Variable declared with no type or value: %v",
-                                        $1, NULL, 0, NULL);
-                       } else {
-                               $0 = new(binode);
-                               $0->op = Declare;
-                               $0->left = $<1;
-                               $0->right = NULL;
-                       }
-               }$
+               if ($1->var->where_set == NULL) {
+                       type_err(c,
+                                "Variable declared with no type or value: %v",
+                                $1, NULL, 0, NULL);
+                       free_var($1);
+               } else {
+                       $0 = b = new(binode);
+                       b->op = Declare;
+                       b->left = $<1;
+                       b->right = NULL;
+               }
+       }$
 
 ###### print binode cases
 
        case Assign:
                do_indent(indent, "");
-               print_exec(b->left, indent, bracket);
+               print_exec(b->left, -1, bracket);
                printf(" = ");
-               print_exec(b->right, indent, bracket);
+               print_exec(b->right, -1, bracket);
                if (indent >= 0)
                        printf("\n");
                break;
@@ -3573,25 +4849,23 @@ it is declared, and error will be raised as the name is created as
                {
                struct variable *v = cast(var, b->left)->var;
                do_indent(indent, "");
-               print_exec(b->left, indent, bracket);
+               print_exec(b->left, -1, bracket);
                if (cast(var, b->left)->var->constant) {
-                       if (v->where_decl == v->where_set) {
-                               printf("::");
+                       printf("::");
+                       if (v->explicit_type) {
                                type_print(v->type, stdout);
                                printf(" ");
-                       } else
-                               printf(" ::");
+                       }
                } else {
-                       if (v->where_decl == v->where_set) {
-                               printf(":");
+                       printf(":");
+                       if (v->explicit_type) {
                                type_print(v->type, stdout);
                                printf(" ");
-                       } else
-                               printf(" :");
+                       }
                }
                if (b->right) {
                        printf("= ");
-                       print_exec(b->right, indent, bracket);
+                       print_exec(b->right, -1, bracket);
                }
                if (indent >= 0)
                        printf("\n");
@@ -3602,29 +4876,53 @@ it is declared, and error will be raised as the name is created as
 
        case Assign:
        case Declare:
-               /* Both must match and not be labels,
+               /* Both must match, or left may be ref and right an lval
                 * Type must support 'dup',
                 * For Assign, left must not be constant.
                 * result is Tnone
                 */
-               t = propagate_types(b->left, c, ok, NULL,
-                                   Rnolabel | (b->op == Assign ? Rnoconstant : 0));
+               *perr &= ~(Erval | Econst);
+               t = propagate_types(b->left, c, perr, NULL, 0);
                if (!b->right)
                        return Tnone;
 
                if (t) {
-                       if (propagate_types(b->right, c, ok, t, 0) != t)
-                               if (b->left->type == Xvar)
-                                       type_err(c, "info: variable '%v' was set as %1 here.",
-                                                cast(var, b->left)->var->where_set, t, rules, NULL);
+                       struct type *t2 = propagate_types(b->right, c, perr_local,
+                                                         t, Rrefok);
+                       if (!t2 || t2 == t || (*perr_local & Efail))
+                               ; // No more effort needed
+                       else if (t->free == reference_free &&
+                                t->reference.referent == t2 &&
+                                !(*perr_local & Erval))
+                               b->right = take_addr(b->right);
+                       else if (t->free == reference_free &&
+                                t->reference.referent == t2 &&
+                                (*perr_local & Erval))
+                               type_err(c, "error: Cannot assign an rval to a reference.",
+                                        b, NULL, 0, NULL);
                } else {
-                       t = propagate_types(b->right, c, ok, NULL, Rnolabel);
+                       t = propagate_types(b->right, c, perr_local, NULL, 0);
                        if (t)
-                               propagate_types(b->left, c, ok, t,
-                                               (b->op == Assign ? Rnoconstant : 0));
+                               propagate_types(b->left, c, perr, t, 0);
+               }
+               if (*perr & Erval)
+                       type_err(c, "error: cannot assign to an rval", b,
+                                NULL, 0, NULL);
+               else if (b->op == Assign && (*perr & Econst)) {
+                       type_err(c, "error: Cannot assign to a constant: %v",
+                                b->left, NULL, 0, NULL);
+                       if (b->left->type == Xvar) {
+                               struct var *var = cast(var, b->left);
+                               struct variable *v = var->var;
+                               type_err(c, "info: name was defined as a constant here",
+                                        v->where_decl, NULL, 0, NULL);
+                       }
                }
-               if (t && t->dup == NULL)
+               if (t && t->dup == NULL && !(*perr_local & Emaycopy))
                        type_err(c, "error: cannot assign value of type %1", b, t, 0, NULL);
+               if (b->left->type == Xvar && (*perr_local & Efail))
+                       type_err(c, "info: variable '%v' was set as %1 here.",
+                                cast(var, b->left)->var->where_set, t, rules, NULL);
                return Tnone;
 
                break;
@@ -3633,63 +4931,44 @@ it is declared, and error will be raised as the name is created as
 
        case Assign:
                lleft = linterp_exec(c, b->left, &ltype);
-               right = interp_exec(c, b->right, &rtype);
-               if (lleft) {
-                       free_value(ltype, lleft);
-                       dup_value(ltype, &right, lleft);
-                       ltype = NULL;
-               }
+               if (lleft)
+                       dinterp_exec(c, b->right, lleft, ltype, 1);
+               ltype = Tnone;
                break;
 
        case Declare:
        {
                struct variable *v = cast(var, b->left)->var;
                struct value *val;
-               if (v->merged)
-                       v = v->merged;
+               v = v->merged;
                val = var_value(c, v);
-               free_value(v->type, val);
                if (v->type->prepare_type)
                        v->type->prepare_type(c, v->type, 0);
-               if (b->right) {
-                       right = interp_exec(c, b->right, &rtype);
-                       memcpy(val, &right, rtype->size);
-                       rtype = Tnone;
-               } else {
+               if (!b->right)
                        val_init(v->type, val);
-               }
+               else
+                       dinterp_exec(c, b->right, val, v->type, 0);
                break;
        }
 
 ### The `use` statement
 
-The `use` statement is the last "simple" statement.  It is needed when
-the condition in a conditional statement is a block.  `use` works much
-like `return` in C, but only completes the `condition`, not the whole
-function.
+The `use` statement is the last "simple" statement.  It is needed when a
+statement block can return a value.  This includes the body of a
+function which has a return type, and the "condition" code blocks in
+`if`, `while`, and `switch` statements.
 
 ###### Binode types
        Use,
 
-###### expr precedence
-       $TERM use       
+###### declare terminals
+       $TERM use
 
 ###### SimpleStatement Grammar
        | use Expression ${
-               $0 = new_pos(binode, $1);
-               $0->op = Use;
-               $0->right = $<2;
-               if ($0->right->type == Xvar) {
-                       struct var *v = cast(var, $0->right);
-                       if (v->var->type == Tnone) {
-                               /* Convert this to a label */
-                               struct value *val;
-
-                               v->var->type = Tlabel;
-                               val = global_alloc(c, Tlabel, v->var, NULL);
-                               val->label = val;
-                       }
-               }
+               $0 = b = new_pos(binode, $1);
+               b->op = Use;
+               b->right = $<2;
        }$
 
 ###### print binode cases
@@ -3705,7 +4984,7 @@ function.
 
        case Use:
                /* result matches value */
-               return propagate_types(b->right, c, ok, type, 0);
+               return propagate_types(b->right, c, perr, type, 0);
 
 ###### interp binode cases
 
@@ -3775,7 +5054,15 @@ the type of the `whilepart` code block is the reason for the
 `Rboolok` flag which is passed to `propagate_types()`.
 
 The `cond_statement` cannot fit into a `binode` so a new `exec` is
-defined.
+defined.  As there are two scopes which cover multiple parts - one for
+the whole statement and one for "while" and "do" - and as we will use
+the 'struct exec' to track scopes, we actually need two new types of
+exec.  One is a `binode` for the looping part, the rest is the
+`cond_statement`.  The `cond_statement` will use an auxilliary `struct
+casepart` to track a list of case parts.
+
+###### Binode types
+       Loop
 
 ###### exec type
        Xcond_statement,
@@ -3788,7 +5075,8 @@ defined.
        };
        struct cond_statement {
                struct exec;
-               struct exec *forpart, *condpart, *dopart, *thenpart, *elsepart;
+               struct exec *forpart, *condpart, *thenpart, *elsepart;
+               struct binode *looppart;
                struct casepart *casepart;
        };
 
@@ -3812,7 +5100,7 @@ defined.
                        return;
                free_exec(s->forpart);
                free_exec(s->condpart);
-               free_exec(s->dopart);
+               free_exec(s->looppart);
                free_exec(s->thenpart);
                free_exec(s->elsepart);
                free_casepart(s->casepart);
@@ -3825,7 +5113,7 @@ defined.
 ###### ComplexStatement Grammar
        | CondStatement ${ $0 = $<1; }$
 
-###### expr precedence
+###### declare terminals
        $TERM for then while do
        $TERM else
        $TERM switch case
@@ -3839,131 +5127,168 @@ defined.
        // may or may not end with EOL
        // WhilePart and IfPart include an appropriate Suffix
 
-       // Both ForPart and Whilepart open scopes, and CondSuffix only
-       // closes one - so in the first branch here we have another to close.
+       // ForPart, SwitchPart, and IfPart open scopes, o we have to close
+       // them.  WhilePart opens and closes its own scope.
        CondStatement -> ForPart OptNL ThenPart OptNL WhilePart CondSuffix ${
-                       $0 = $<CS;
-                       $0->forpart = $<FP;
-                       $0->thenpart = $<TP;
-                       $0->condpart = $WP.condpart; $WP.condpart = NULL;
-                       $0->dopart = $WP.dopart; $WP.dopart = NULL;
-                       var_block_close(c, CloseSequential);
-                       }$
-               | ForPart OptNL WhilePart CondSuffix ${
-                       $0 = $<CS;
-                       $0->forpart = $<FP;
-                       $0->condpart = $WP.condpart; $WP.condpart = NULL;
-                       $0->dopart = $WP.dopart; $WP.dopart = NULL;
-                       var_block_close(c, CloseSequential);
-                       }$
-               | WhilePart CondSuffix ${
-                       $0 = $<CS;
-                       $0->condpart = $WP.condpart; $WP.condpart = NULL;
-                       $0->dopart = $WP.dopart; $WP.dopart = NULL;
-                       }$
-               | SwitchPart OptNL CasePart CondSuffix ${
-                       $0 = $<CS;
-                       $0->condpart = $<SP;
-                       $CP->next = $0->casepart;
-                       $0->casepart = $<CP;
-                       }$
-               | SwitchPart : IN OptNL CasePart CondSuffix OUT Newlines ${
-                       $0 = $<CS;
-                       $0->condpart = $<SP;
-                       $CP->next = $0->casepart;
-                       $0->casepart = $<CP;
-                       }$
-               | IfPart IfSuffix ${
-                       $0 = $<IS;
-                       $0->condpart = $IP.condpart; $IP.condpart = NULL;
-                       $0->thenpart = $IP.thenpart; $IP.thenpart = NULL;
-                       // This is where we close an "if" statement
-                       var_block_close(c, CloseSequential);
-                       }$
+               $0 = $<CS;
+               $0->forpart = $<FP;
+               $0->thenpart = $<TP;
+               $0->looppart = $<WP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | ForPart OptNL WhilePart CondSuffix ${
+               $0 = $<CS;
+               $0->forpart = $<FP;
+               $0->looppart = $<WP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | WhilePart CondSuffix ${
+               $0 = $<CS;
+               $0->looppart = $<WP;
+       }$
+       | SwitchPart OptNL CasePart CondSuffix ${
+               $0 = $<CS;
+               $0->condpart = $<SP;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | SwitchPart : IN OptNL CasePart CondSuffix OUT Newlines ${
+               $0 = $<CS;
+               $0->condpart = $<SP;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | IfPart IfSuffix ${
+               $0 = $<IS;
+               $0->condpart = $IP.condpart; $IP.condpart = NULL;
+               $0->thenpart = $IP.thenpart; $IP.thenpart = NULL;
+               // This is where we close an "if" statement
+               var_block_close(c, CloseSequential, $0);
+       }$
 
        CondSuffix -> IfSuffix ${
-                       $0 = $<1;
-                       // This is where we close scope of the whole
-                       // "for" or "while" statement
-                       var_block_close(c, CloseSequential);
-               }$
-               | Newlines CasePart CondSuffix ${
-                       $0 = $<CS;
-                       $CP->next = $0->casepart;
-                       $0->casepart = $<CP;
-               }$
-               | CasePart CondSuffix ${
-                       $0 = $<CS;
-                       $CP->next = $0->casepart;
-                       $0->casepart = $<CP;
-               }$
+               $0 = $<1;
+       }$
+       | Newlines CasePart CondSuffix ${
+               $0 = $<CS;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+       }$
+       | CasePart CondSuffix ${
+               $0 = $<CS;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+       }$
 
        IfSuffix -> Newlines ${ $0 = new(cond_statement); }$
-               | Newlines ElsePart ${ $0 = $<EP; }$
-               | ElsePart ${$0 = $<EP; }$
+       | Newlines ElsePart ${ $0 = $<EP; }$
+       | ElsePart ${$0 = $<EP; }$
 
        ElsePart -> else OpenBlock Newlines ${
-                       $0 = new(cond_statement);
-                       $0->elsepart = $<OB;
-                       var_block_close(c, CloseElse);
-               }$
-               | else OpenScope CondStatement ${
-                       $0 = new(cond_statement);
-                       $0->elsepart = $<CS;
-                       var_block_close(c, CloseElse);
-               }$
+               $0 = new(cond_statement);
+               $0->elsepart = $<OB;
+               var_block_close(c, CloseElse, $0->elsepart);
+       }$
+       | else OpenScope CondStatement ${
+               $0 = new(cond_statement);
+               $0->elsepart = $<CS;
+               var_block_close(c, CloseElse, $0->elsepart);
+       }$
 
        $*casepart
        CasePart -> case Expression OpenScope ColonBlock ${
-                       $0 = calloc(1,sizeof(struct casepart));
-                       $0->value = $<Ex;
-                       $0->action = $<Bl;
-                       var_block_close(c, CloseParallel);
-               }$
+               $0 = calloc(1,sizeof(struct casepart));
+               $0->value = $<Ex;
+               $0->action = $<Bl;
+               var_block_close(c, CloseParallel, $0->action);
+       }$
 
        $*exec
-       // These scopes are closed in CondSuffix
+       // These scopes are closed in CondStatement
        ForPart -> for OpenBlock ${
-                       $0 = $<Bl;
-               }$
+               $0 = $<Bl;
+       }$
 
        ThenPart -> then OpenBlock ${
-                       $0 = $<OB;
-                       var_block_close(c, CloseSequential);
-               }$
+               $0 = $<OB;
+               var_block_close(c, CloseSequential, $0);
+       }$
+
+       $*binode
+       // This scope is closed in CondStatement
+       WhilePart -> while UseBlock OptNL do OpenBlock ${
+               $0 = new(binode);
+               $0->op = Loop;
+               $0->left = $<UB;
+               $0->right = $<OB;
+               var_block_close(c, CloseSequential, $0->right);
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | while OpenScope Expression OpenScope ColonBlock ${
+               $0 = new(binode);
+               $0->op = Loop;
+               $0->left = $<Exp;
+               $0->right = $<CB;
+               var_block_close(c, CloseSequential, $0->right);
+               var_block_close(c, CloseSequential, $0);
+       }$
 
        $cond_statement
-       // This scope is closed in CondSuffix
-       WhilePart -> while UseBlock OptNL do Block ${
-                       $0.condpart = $<UB;
-                       $0.dopart = $<Bl;
-               }$
-               | while OpenScope Expression ColonBlock ${
-                       $0.condpart = $<Exp;
-                       $0.dopart = $<Bl;
-               }$
-
-       IfPart -> if UseBlock OptNL then OpenBlock ClosePara ${
-                       $0.condpart = $<UB;
-                       $0.thenpart = $<Bl;
-               }$
-               | if OpenScope Expression OpenScope ColonBlock ClosePara ${
-                       $0.condpart = $<Ex;
-                       $0.thenpart = $<Bl;
-               }$
-               | if OpenScope Expression OpenScope OptNL then Block ClosePara ${
-                       $0.condpart = $<Ex;
-                       $0.thenpart = $<Bl;
-               }$
+       IfPart -> if UseBlock OptNL then OpenBlock ${
+               $0.condpart = $<UB;
+               $0.thenpart = $<OB;
+               var_block_close(c, CloseParallel, $0.thenpart);
+       }$
+       | if OpenScope Expression OpenScope ColonBlock ${
+               $0.condpart = $<Ex;
+               $0.thenpart = $<CB;
+               var_block_close(c, CloseParallel, $0.thenpart);
+       }$
+       | if OpenScope Expression OpenScope OptNL then Block ${
+               $0.condpart = $<Ex;
+               $0.thenpart = $<Bl;
+               var_block_close(c, CloseParallel, $0.thenpart);
+       }$
 
        $*exec
-       // This scope is closed in CondSuffix
+       // This scope is closed in CondStatement
        SwitchPart -> switch OpenScope Expression ${
-                       $0 = $<Ex;
-               }$
-               | switch UseBlock ${
-                       $0 = $<Bl;
-               }$
+               $0 = $<Ex;
+       }$
+       | switch UseBlock ${
+               $0 = $<Bl;
+       }$
+
+###### print binode cases
+       case Loop:
+               if (b->left && b->left->type == Xbinode &&
+                   cast(binode, b->left)->op == Block) {
+                       if (bracket)
+                               do_indent(indent, "while {\n");
+                       else
+                               do_indent(indent, "while\n");
+                       print_exec(b->left, indent+1, bracket);
+                       if (bracket)
+                               do_indent(indent, "} do {\n");
+                       else
+                               do_indent(indent, "do\n");
+                       print_exec(b->right, indent+1, bracket);
+                       if (bracket)
+                               do_indent(indent, "}\n");
+               } else {
+                       do_indent(indent, "while ");
+                       print_exec(b->left, 0, bracket);
+                       if (bracket)
+                               printf(" {\n");
+                       else
+                               printf(":\n");
+                       print_exec(b->right, indent+1, bracket);
+                       if (bracket)
+                               do_indent(indent, "}\n");
+               }
+               break;
 
 ###### print exec cases
 
@@ -3984,33 +5309,8 @@ defined.
                        }
                        if (bracket) do_indent(indent, "}\n");
                }
-               if (cs->dopart) {
-                       // a loop
-                       if (cs->condpart && cs->condpart->type == Xbinode &&
-                           cast(binode, cs->condpart)->op == Block) {
-                               if (bracket)
-                                       do_indent(indent, "while {\n");
-                               else
-                                       do_indent(indent, "while\n");
-                               print_exec(cs->condpart, indent+1, bracket);
-                               if (bracket)
-                                       do_indent(indent, "} do {\n");
-                               else
-                                       do_indent(indent, "do\n");
-                               print_exec(cs->dopart, indent+1, bracket);
-                               if (bracket)
-                                       do_indent(indent, "}\n");
-                       } else {
-                               do_indent(indent, "while ");
-                               print_exec(cs->condpart, 0, bracket);
-                               if (bracket)
-                                       printf(" {\n");
-                               else
-                                       printf(":\n");
-                               print_exec(cs->dopart, indent+1, bracket);
-                               if (bracket)
-                                       do_indent(indent, "}\n");
-                       }
+               if (cs->looppart) {
+                       print_exec(cs->looppart, indent, bracket);
                } else {
                        // a condition
                        if (cs->casepart)
@@ -4022,12 +5322,12 @@ defined.
                                if (bracket)
                                        printf(" {\n");
                                else
-                                       printf(":\n");
+                                       printf("\n");
                                print_exec(cs->condpart, indent+1, bracket);
                                if (bracket)
                                        do_indent(indent, "}\n");
                                if (cs->thenpart) {
-                                       do_indent(indent, "then:\n");
+                                       do_indent(indent, "then\n");
                                        print_exec(cs->thenpart, indent+1, bracket);
                                }
                        } else {
@@ -4069,11 +5369,16 @@ defined.
                break;
        }
 
+###### propagate binode cases
+       case Loop:
+               propagate_types(b->right, c, perr_local, Tnone, 0);
+               return propagate_types(b->left, c, perr, type, rules);
+
 ###### propagate exec cases
        case Xcond_statement:
        {
-               // forpart and dopart must return Tnone
-               // thenpart must return Tnone if there is a dopart,
+               // forpart and looppart->right must return Tnone
+               // thenpart must return Tnone if there is a loopart,
                // otherwise it is like elsepart.
                // condpart must:
                //    be bool if there is no casepart
@@ -4085,54 +5390,65 @@ defined.
                struct cond_statement *cs = cast(cond_statement, prog);
                struct casepart *cp;
 
-               t = propagate_types(cs->forpart, c, ok, Tnone, 0);
-               if (!type_compat(Tnone, t, 0))
-                       *ok = 0;
-               t = propagate_types(cs->dopart, c, ok, Tnone, 0);
-               if (!type_compat(Tnone, t, 0))
-                       *ok = 0;
-               if (cs->dopart) {
-                       t = propagate_types(cs->thenpart, c, ok, Tnone, 0);
-                       if (!type_compat(Tnone, t, 0))
-                               *ok = 0;
+               t = propagate_types(cs->forpart, c, perr, Tnone, 0);
+
+               if (cs->looppart) {
+                       t = propagate_types(cs->thenpart, c, perr, Tnone, 0);
                }
-               if (cs->casepart == NULL)
-                       propagate_types(cs->condpart, c, ok, Tbool, 0);
-               else {
+               if (cs->casepart == NULL) {
+                       propagate_types(cs->condpart, c, perr, Tbool, 0);
+                       propagate_types(cs->looppart, c, perr, Tbool, 0);
+               } else {
                        /* Condpart must match case values, with bool permitted */
                        t = NULL;
                        for (cp = cs->casepart;
                             cp && !t; cp = cp->next)
-                               t = propagate_types(cp->value, c, ok, NULL, 0);
+                               t = propagate_types(cp->value, c, perr, NULL, 0);
                        if (!t && cs->condpart)
-                               t = propagate_types(cs->condpart, c, ok, NULL, Rboolok);
+                               t = propagate_types(cs->condpart, c, perr, // NOTEST
+                                                   NULL, Rboolok);
+                       if (!t && cs->looppart)
+       
+                       t = propagate_types(cs->looppart, c, perr, NULL, // NOTEST
+                                                   Rboolok);
                        // Now we have a type (I hope) push it down
                        if (t) {
                                for (cp = cs->casepart; cp; cp = cp->next)
-                                       propagate_types(cp->value, c, ok, t, 0);
-                               propagate_types(cs->condpart, c, ok, t, Rboolok);
+                                       propagate_types(cp->value, c, perr, t, 0);
+                               propagate_types(cs->condpart, c, perr, t, Rboolok);
+                               propagate_types(cs->looppart, c, perr, t, Rboolok);
                        }
                }
                // (if)then, else, and case parts must return expected type.
-               if (!cs->dopart && !type)
-                       type = propagate_types(cs->thenpart, c, ok, NULL, rules);
+               if (!cs->looppart && !type)
+                       type = propagate_types(cs->thenpart, c, perr, NULL, rules);
                if (!type)
-                       type = propagate_types(cs->elsepart, c, ok, NULL, rules);
+                       type = propagate_types(cs->elsepart, c, perr, NULL, rules);
                for (cp = cs->casepart;
                     cp && !type;
-                    cp = cp->next)
-                       type = propagate_types(cp->action, c, ok, NULL, rules);
+                    cp = cp->next)     // NOTEST
+                       type = propagate_types(cp->action, c, perr, NULL, rules);       // NOTEST
                if (type) {
-                       if (!cs->dopart)
-                               propagate_types(cs->thenpart, c, ok, type, rules);
-                       propagate_types(cs->elsepart, c, ok, type, rules);
+                       if (!cs->looppart)
+                               propagate_types(cs->thenpart, c, perr, type, rules);
+                       propagate_types(cs->elsepart, c, perr, type, rules);
                        for (cp = cs->casepart; cp ; cp = cp->next)
-                               propagate_types(cp->action, c, ok, type, rules);
+                               propagate_types(cp->action, c, perr, type, rules);
                        return type;
                } else
                        return NULL;
        }
 
+###### interp binode cases
+       case Loop:
+               // This just performs one iterration of the loop
+               rv = interp_exec(c, b->left, &rvtype);
+               if (rvtype == Tnone ||
+                   (rvtype == Tbool && rv.bool != 0))
+                       // rvtype is Tnone or Tbool, doesn't need to be freed
+                       interp_exec(c, b->right, NULL);
+               break;
+
 ###### interp exec cases
        case Xcond_statement:
        {
@@ -4143,27 +5459,20 @@ defined.
 
                if (cs->forpart)
                        interp_exec(c, cs->forpart, NULL);
-               do {
-                       if (cs->condpart)
-                               cnd = interp_exec(c, cs->condpart, &cndtype);
-                       else
-                               cndtype = Tnone;
-                       if (!(cndtype == Tnone ||
-                             (cndtype == Tbool && cnd.bool != 0)))
-                               break;
-                       // cnd is Tnone or Tbool, doesn't need to be freed
-                       if (cs->dopart)
-                               interp_exec(c, cs->dopart, NULL);
-
-                       if (cs->thenpart) {
+               if (cs->looppart) {
+                       while ((cnd = interp_exec(c, cs->looppart, &cndtype)),
+                              cndtype == Tnone || (cndtype == Tbool && cnd.bool != 0))
+                               interp_exec(c, cs->thenpart, NULL);
+               } else {
+                       cnd = interp_exec(c, cs->condpart, &cndtype);
+                       if ((cndtype == Tnone ||
+                           (cndtype == Tbool && cnd.bool != 0))) {
+                               // cnd is Tnone or Tbool, doesn't need to be freed
                                rv = interp_exec(c, cs->thenpart, &rvtype);
-                               if (rvtype != Tnone || !cs->dopart)
-                                       goto Xcond_done;
-                               free_value(rvtype, &rv);
-                               rvtype = Tnone;
+                               // skip else (and cases)
+                               goto Xcond_done;
                        }
-               } while (cs->dopart);
-
+               }
                for (cp = cs->casepart; cp; cp = cp->next) {
                        v = interp_exec(c, cp->value, &vtype);
                        if (value_cmp(cndtype, vtype, &v, &cnd) == 0) {
@@ -4189,12 +5498,8 @@ All the language elements so far can be used in various places.  Now
 it is time to clarify what those places are.
 
 At the top level of a file there will be a number of declarations.
-Many of the things that can be declared haven't been described yet,
-such as functions, procedures, imports, and probably more.
-For now there are two sorts of things that can appear at the top
-level.  They are predefined constants, `struct` types, and the `main`
-function.  While the syntax will allow the `main` function to appear
-multiple times, that will trigger an error if it is actually attempted.
+These can be for predefined constants, `struct` types, and functions -
+particularly the `main` function.
 
 The various declarations do not return anything.  They store the
 various declarations in the parse context.
@@ -4207,20 +5512,21 @@ various declarations in the parse context.
        ## declare terminals
 
        OptNL ->
-               | OptNL NEWLINE
+       | OptNL NEWLINE
+
        Newlines -> NEWLINE
-               | Newlines NEWLINE
+       | Newlines NEWLINE
 
        DeclarationList -> Declaration
-               | DeclarationList Declaration
+       | DeclarationList Declaration
 
        Declaration -> ERROR Newlines ${
-                       tok_err(c,
-                               "error: unhandled parse error", &$1);
-               }$
-               | DeclareConstant
-               | DeclareFunction
-               | DeclareStruct
+               tok_err(c,      // NOTEST
+                       "error: unhandled parse error", &$1);
+       }$
+       | DeclareConstant
+       | DeclareFunction
+       | DeclareStruct
 
        ## top level grammar
 
@@ -4228,13 +5534,15 @@ various declarations in the parse context.
 
 ### The `const` section
 
-As well as being defined in with the code that uses them, constants
-can be declared at the top level.  These have full-file scope, so they
-are always `InScope`.  The value of a top level constant can be given
-as an expression, and this is evaluated immediately rather than in the
-later interpretation stage.  Once we add functions to the language, we
-will need rules concern which, if any, can be used to define a top
-level constant.
+As well as being defined in with the code that uses them, constants can
+be declared at the top level.  These have full-file scope, so they are
+always `InScope`, even before(!) they have been declared.  The value of
+a top level constant can be given as an expression, and this is
+evaluated after parsing and before execution.
+
+A function call can syntactically be used to evaluate a constant, but as
+yet we don't detect which functions are safe to use that way, so this
+does not actually work.
 
 Constants are defined in a section that starts with the reserved word
 `const` and then has a block with a list of assignment statements.
@@ -4243,63 +5551,263 @@ make it clear that they are constants.  Type can also be given: if
 not, the type will be determined during analysis, as with other
 constants.
 
-As the types constants are inserted at the head of a list, printing
-them in the same order that they were read is not straight forward.
-We take a quadratic approach here and count the number of constants
-(variables of depth 0), then count down from there, each time
-searching through for the Nth constant for decreasing N.
+###### parse context
+       struct binode *constlist;
 
 ###### top level grammar
 
        $TERM const
 
        DeclareConstant -> const { IN OptNL ConstList OUT OptNL } Newlines
-               | const { SimpleConstList } Newlines
-               | const IN OptNL ConstList OUT Newlines
-               | const SimpleConstList Newlines
+       | const { SimpleConstList } Newlines
+       | const IN OptNL ConstList OUT Newlines
+       | const SimpleConstList Newlines
 
        ConstList -> ConstList SimpleConstLine
-               | SimpleConstLine
+       | SimpleConstLine
+
        SimpleConstList -> SimpleConstList ; Const
-               | Const
-               | SimpleConstList ;
+       | Const
+       | SimpleConstList ;
+
        SimpleConstLine -> SimpleConstList Newlines
-               | ERROR Newlines ${ tok_err(c, "Syntax error in constant", &$1); }$
+       | ERROR Newlines ${ tok_err(c, "Syntax error in constant", &$1); }$
 
        $*type
        CType -> Type   ${ $0 = $<1; }$
-               |       ${ $0 = NULL; }$
+       |               ${ $0 = NULL; }$
+
        $void
        Const -> IDENTIFIER :: CType = Expression ${ {
-               int ok;
                struct variable *v;
+               struct binode *bl, *bv;
+               struct var *var = new_pos(var, $ID);
 
-               v = var_decl(c, $1.txt);
+               v = var_decl(c, $ID.txt);
                if (v) {
-                       struct var *var = new_pos(var, $1);
                        v->where_decl = var;
                        v->where_set = var;
-                       var->var = v;
+                       v->type = $<CT;
                        v->constant = 1;
+                       v->global = 1;
                } else {
                        v = var_ref(c, $1.txt);
-                       tok_err(c, "error: name already declared", &$1);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
-               do {
-                       ok = 1;
-                       propagate_types($5, c, &ok, $3, 0);
-               } while (ok == 2);
-               if (!ok)
-                       c->parse_error = 1;
-               else if (v) {
-                       struct value res = interp_exec(c, $5, &v->type);
-                       global_alloc(c, v->type, v, &res);
+                       if (v->type == Tnone) {
+                               v->where_decl = var;
+                               v->where_set = var;
+                               v->type = $<CT;
+                               v->constant = 1;
+                               v->global = 1;
+                       } else {
+                               tok_err(c, "error: name already declared", &$1);
+                               type_err(c, "info: this is where '%v' was first declared",
+                                        v->where_decl, NULL, 0, NULL);
+                       }
                }
+               var->var = v;
+
+               bv = new(binode);
+               bv->op = Declare;
+               bv->left = var;
+               bv->right= $<Exp;
+
+               bl = new(binode);
+               bl->op = List;
+               bl->left = c->constlist;
+               bl->right = bv;
+               c->constlist = bl;
        } }$
 
+###### core functions
+       static void resolve_consts(struct parse_context *c)
+       {
+               struct binode *b;
+               int retry = 1;
+               enum { none, some, cannot } progress = none;
+
+               c->constlist = reorder_bilist(c->constlist);
+               while (retry) {
+                       retry = 0;
+                       for (b = cast(binode, c->constlist); b;
+                            b = cast(binode, b->right)) {
+                               enum prop_err perr;
+                               struct binode *vb = cast(binode, b->left);
+                               struct var *v = cast(var, vb->left);
+                               if (v->var->frame_pos >= 0)
+                                       continue;
+                               do {
+                                       perr = 0;
+                                       propagate_types(vb->right, c, &perr,
+                                                       v->var->type, 0);
+                               } while (perr & Eretry);
+                               if (perr & Efail)
+                                       c->parse_error += 1;
+                               else if (!(perr & Eruntime)) {
+                                       progress = some;
+                                       struct value res = interp_exec(
+                                               c, vb->right, &v->var->type);
+                                       global_alloc(c, v->var->type, v->var, &res);
+                               } else {
+                                       if (progress == cannot)
+                                               type_err(c, "error: const %v cannot be resolved.",
+                                                        v, NULL, 0, NULL);
+                                       else
+                                               retry = 1;
+                               }
+                       }
+                       switch (progress) {
+                       case cannot:
+                               retry = 0; break;
+                       case none:
+                               progress = cannot; break;
+                       case some:
+                               progress = none; break;
+                       }
+               }
+       }
+
 ###### print const decls
+       {
+               struct binode *b;
+               int first = 1;
+
+               for (b = cast(binode, context.constlist); b;
+                    b = cast(binode, b->right)) {
+                       struct binode *vb = cast(binode, b->left);
+                       struct var *vr = cast(var, vb->left);
+                       struct variable *v = vr->var;
+
+                       if (first)
+                               printf("const\n");
+                       first = 0;
+
+                       printf("    %.*s :: ", v->name->name.len, v->name->name.txt);
+                       type_print(v->type, stdout);
+                       printf(" = ");
+                       print_exec(vb->right, -1, 0);
+                       printf("\n");
+               }
+       }
+
+###### free const decls
+       free_binode(context.constlist);
+
+### Function declarations
+
+The code in an Ocean program is all stored in function declarations.
+One of the functions must be named `main` and it must accept an array of
+strings as a parameter - the command line arguments.
+
+As this is the top level, several things are handled a bit differently.
+The function is not interpreted by `interp_exec` as that isn't passed
+the argument list which the program requires.  Similarly type analysis
+is a bit more interesting at this level.
+
+###### ast functions
+
+       static struct type *handle_results(struct parse_context *c,
+                                          struct binode *results)
+       {
+               /* Create a 'struct' type from the results list, which
+                * is a list for 'struct var'
+                */
+               struct type *t = add_anon_type(c, &structure_prototype,
+                                              "function result");
+               int cnt = 0;
+               struct binode *b;
+
+               for (b = results; b; b = cast(binode, b->right))
+                       cnt += 1;
+               t->structure.nfields = cnt;
+               t->structure.fields = calloc(cnt, sizeof(struct field));
+               cnt = 0;
+               for (b = results; b; b = cast(binode, b->right)) {
+                       struct var *v = cast(var, b->left);
+                       struct field *f = &t->structure.fields[cnt++];
+                       int a = v->var->type->align;
+                       f->name = v->var->name->name;
+                       f->type = v->var->type;
+                       f->init = NULL;
+                       f->offset = t->size;
+                       v->var->frame_pos = f->offset;
+                       t->size += ((f->type->size - 1) | (a-1)) + 1;
+                       if (a > t->align)
+                               t->align = a;
+                       variable_unlink_exec(v->var);
+               }
+               free_binode(results);
+               return t;
+       }
+
+       static struct variable *declare_function(struct parse_context *c,
+                                               struct variable *name,
+                                               struct binode *args,
+                                               struct type *ret,
+                                               struct binode *results,
+                                               struct exec *code)
+       {
+               if (name) {
+                       struct value fn = {.function = code};
+                       struct type *t;
+                       var_block_close(c, CloseFunction, code);
+                       t = add_anon_type(c, &function_prototype,
+                                         "func %.*s", name->name->name.len,
+                                         name->name->name.txt);
+                       name->type = t;
+                       t->function.params = reorder_bilist(args);
+                       if (!ret) {
+                               ret = handle_results(c, reorder_bilist(results));
+                               t->function.inline_result = 1;
+                               t->function.local_size = ret->size;
+                       }
+                       t->function.return_type = ret;
+                       global_alloc(c, t, name, &fn);
+                       name->type->function.scope = c->out_scope;
+               } else {
+                       free_binode(args);
+                       free_type(ret);
+                       free_exec(code);
+                       var_block_close(c, CloseFunction, NULL);
+               }
+               c->out_scope = NULL;
+               return name;
+       }
+
+###### declare terminals
+       $TERM return
+
+###### top level grammar
+
+       $*variable
+       DeclareFunction -> func FuncName ( OpenScope ArgsLine ) Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, Tnone, NULL, $<Bl);
+       }$
+       | func FuncName IN OpenScope Args OUT OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, Tnone, NULL, $<Bl);
+       }$
+       | func FuncName NEWLINE OpenScope OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, NULL, Tnone, NULL, $<Bl);
+       }$
+       | func FuncName ( OpenScope ArgsLine ) : Type Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, $<Ty, NULL, $<Bl);
+       }$
+       | func FuncName ( OpenScope ArgsLine ) : ( ArgsLine ) Block Newlines ${
+               $0 = declare_function(c, $<FN, $<AL, NULL, $<AL2, $<Bl);
+       }$
+       | func FuncName IN OpenScope Args OUT OptNL return Type Newlines do Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, $<Ty, NULL, $<Bl);
+       }$
+       | func FuncName NEWLINE OpenScope return Type Newlines do Block Newlines ${
+               $0 = declare_function(c, $<FN, NULL, $<Ty, NULL, $<Bl);
+       }$
+       | func FuncName IN OpenScope Args OUT OptNL return IN Args OUT OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, NULL, $<Ar2, $<Bl);
+       }$
+       | func FuncName NEWLINE OpenScope return IN Args OUT OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, NULL, NULL, $<Ar, $<Bl);
+       }$
+
+###### print func decls
        {
                struct variable *v;
                int target = -1;
@@ -4307,153 +5815,136 @@ searching through for the Nth constant for decreasing N.
                while (target != 0) {
                        int i = 0;
                        for (v = context.in_scope; v; v=v->in_scope)
-                               if (v->depth == 0) {
+                               if (v->depth == 0 && v->type && v->type->check_args) {
                                        i += 1;
                                        if (i == target)
                                                break;
                                }
 
                        if (target == -1) {
-                               if (i)
-                                       printf("const\n");
                                target = i;
                        } else {
                                struct value *val = var_value(&context, v);
-                               printf("    %.*s :: ", v->name->name.len, v->name->name.txt);
-                               type_print(v->type, stdout);
-                               printf(" = ");
-                               if (v->type == Tstr)
-                                       printf("\"");
-                               print_value(v->type, val);
-                               if (v->type == Tstr)
-                                       printf("\"");
-                               printf("\n");
+                               printf("func %.*s", v->name->name.len, v->name->name.txt);
+                               v->type->print_type_decl(v->type, stdout);
+                               if (brackets) {
+                                       printf(" {\n");
+                                       print_exec(val->function, 1, brackets);
+                                       printf("}\n");
+                               } else {
+                                       print_value(v->type, val, stdout);
+                               }
+                               printf("/* frame size %d */\n", v->type->function.local_size);
                                target -= 1;
                        }
                }
        }
 
-### Finally the whole `main` function.
-
-An Ocean program can currently have only one function - `main` - and
-that must exist.  It expects an array of strings with a provided size.
-Following this is a `block` which is the code to execute.
-
-As this is the top level, several things are handled a bit
-differently.
-The function is not interpreted by `interp_exec` as that isn't
-passed the argument list which the program requires.  Similarly type
-analysis is a bit more interesting at this level.
-
-###### top level grammar
+###### core functions
 
-       DeclareFunction -> MainFunction ${ {
-               if (c->prog)
-                       type_err(c, "\"main\" defined a second time",
-                                $1, NULL, 0, NULL);
-               else
-                       c->prog = $<1;
-       } }$
+       static int analyse_funcs(struct parse_context *c)
+       {
+               struct variable *v;
+               int all_ok = 1;
+               for (v = c->in_scope; v; v = v->in_scope) {
+                       struct value *val;
+                       struct type *ret;
+                       enum prop_err perr;
+                       if (v->depth != 0 || !v->type || !v->type->check_args)
+                               continue;
+                       ret = v->type->function.inline_result ?
+                               Tnone : v->type->function.return_type;
+                       val = var_value(c, v);
+                       do {
+                               perr = 0;
+                               propagate_types(val->function, c, &perr, ret, 0);
+                       } while (!(perr & Efail) && (perr & Eretry));
+                       if (!(perr & Efail))
+                               /* Make sure everything is still consistent */
+                               propagate_types(val->function, c, &perr, ret, 0);
+                       if (perr & Efail)
+                               all_ok = 0;
+                       if (!v->type->function.inline_result &&
+                           !v->type->function.return_type->dup) {
+                               type_err(c, "error: function cannot return value of type %1",
+                                        v->where_decl, v->type->function.return_type, 0, NULL);
+                       }
 
-###### print binode cases
-       case Func:
-       case List:
-               do_indent(indent, "func main(");
-               for (b2 = cast(binode, b->left); b2; b2 = cast(binode, b2->right)) {
-                       struct variable *v = cast(var, b2->left)->var;
-                       printf(" ");
-                       print_exec(b2->left, 0, 0);
-                       printf(":");
-                       type_print(v->type, stdout);
+                       scope_finalize(c, v->type);
                }
-               if (bracket)
-                       printf(") {\n");
-               else
-                       printf(")\n");
-               print_exec(b->right, indent+1, bracket);
-               if (bracket)
-                       do_indent(indent, "}\n");
-               break;
-
-###### propagate binode cases
-       case List:
-       case Func: abort();             // NOTEST
-
-###### core functions
+               return all_ok;
+       }
 
-       static int analyse_prog(struct exec *prog, struct parse_context *c)
+       static int analyse_main(struct type *type, struct parse_context *c)
        {
-               struct binode *bp = cast(binode, prog);
+               struct binode *bp = type->function.params;
                struct binode *b;
-               int ok = 1;
+               enum prop_err perr;
                int arg = 0;
                struct type *argv_type;
-               struct text argv_type_name = { " argv", 5 };
-
-               if (!bp)
-                       return 0;       // NOTEST
 
-               argv_type = add_type(c, argv_type_name, &array_prototype);
+               argv_type = add_anon_type(c, &array_prototype, "argv");
                argv_type->array.member = Tstr;
                argv_type->array.unspec = 1;
 
-               for (b = cast(binode, bp->left); b; b = cast(binode, b->right)) {
-                       ok = 1;
+               for (b = bp; b; b = cast(binode, b->right)) {
+                       perr = 0;
                        switch (arg++) {
                        case 0: /* argv */
-                               propagate_types(b->left, c, &ok, argv_type, 0);
+                               propagate_types(b->left, c, &perr, argv_type, 0);
                                break;
                        default: /* invalid */  // NOTEST
-                               propagate_types(b->left, c, &ok, Tnone, 0);     // NOTEST
+                               propagate_types(b->left, c, &perr, Tnone, 0);   // NOTEST
                        }
+                       if (perr & Efail)
+                               c->parse_error += 1;
                }
 
-               do {
-                       ok = 1;
-                       propagate_types(bp->right, c, &ok, Tnone, 0);
-               } while (ok == 2);
-               if (!ok)
-                       return 0;
-
-               /* Make sure everything is still consistent */
-               propagate_types(bp->right, c, &ok, Tnone, 0);
-               if (!ok)
-                       return 0;
-               scope_finalize(c);
-               return 1;
+               return !c->parse_error;
        }
 
-       static void interp_prog(struct parse_context *c, struct exec *prog, 
-                               int argc, char **argv)
+       static void interp_main(struct parse_context *c, int argc, char **argv)
        {
-               struct binode *p = cast(binode, prog);
+               struct value *progp = NULL;
+               struct text main_name = { "main", 4 };
+               struct variable *mainv;
                struct binode *al;
                int anum = 0;
                struct value v;
                struct type *vtype;
 
-               if (!prog)
-                       return;         // NOTEST
-               al = cast(binode, p->left);
+               mainv = var_ref(c, main_name);
+               if (mainv)
+                       progp = var_value(c, mainv);
+               if (!progp || !progp->function) {
+                       fprintf(stderr, "oceani: no main function found.\n");
+                       c->parse_error += 1;
+                       return;
+               }
+               if (!analyse_main(mainv->type, c)) {
+                       fprintf(stderr, "oceani: main has wrong type.\n");
+                       c->parse_error += 1;
+                       return;
+               }
+               al = mainv->type->function.params;
+
+               c->local_size = mainv->type->function.local_size;
+               c->local = calloc(1, c->local_size);
                while (al) {
                        struct var *v = cast(var, al->left);
                        struct value *vl = var_value(c, v->var);
                        struct value arg;
                        struct type *t;
-                       mpq_t argcq;
                        int i;
 
                        switch (anum++) {
                        case 0: /* argv */
                                t = v->var->type;
-                               mpq_init(argcq);
-                               mpq_set_ui(argcq, argc, 1);
-                               memcpy(var_value(c, t->array.vsize), &argcq, sizeof(argcq));
+                               t->array.size = argc;
                                t->prepare_type(c, t, 0);
                                array_init(v->var->type, vl);
                                for (i = 0; i < argc; i++) {
                                        struct value *vl2 = vl->array + i * v->var->type->array.member->size;
-                                       
 
                                        arg.str.txt = argv[i];
                                        arg.str.len = strlen(argv[i]);
@@ -4464,14 +5955,12 @@ analysis is a bit more interesting at this level.
                        }
                        al = cast(binode, al->right);
                }
-               v = interp_exec(c, p->right, &vtype);
+               v = interp_exec(c, progp->function, &vtype);
                free_value(vtype, &v);
+               free(c->local);
+               c->local = NULL;
        }
 
-###### interp binode cases
-       case List:
-       case Func: abort();     // NOTEST
-
 ## And now to test it out.
 
 Having a language requires having a "hello world" program.  I'll
@@ -4500,9 +5989,12 @@ things which will likely grow as the languages grows.
                name:string
                alive:Boolean
 
-       func main
-               argv:[argc::]string
-       do
+       func fibonacci(n:number):number
+               if n <= 2:
+                       use 1
+               else use fibonacci(n-1) + fibonacci(n-2)
+
+       func main(argv:[]string)
                print "Hello World, what lovely oceans you have!"
                print "Are there", five, "?"
                print pi, pie, "but", cake
@@ -4530,7 +6022,7 @@ things which will likely grow as the languages grows.
                a : number
                a = A;
                b:number = B
-               if a > 0 and then b > 0:
+               if a > 0 and b > 0:
                        while a != b:
                                if a < b:
                                        b = b - a
@@ -4553,6 +6045,13 @@ things which will likely grow as the languages grows.
                        f1 = f2
                        f2 = f3
                print ""
+               for
+                       f := 1
+                       print "Fibonacci:",
+               then f = f + 1
+               while f < 13:
+                       print "", fibonacci(f),
+               print
 
                /* Binary search... */
                for
@@ -4561,19 +6060,20 @@ things which will likely grow as the languages grows.
                while
                        mid := (lo + hi) / 2
                        if mid == target:
-                               use Found
+                               use .Found
                        if mid < target:
                                lo = mid
                        else
                                hi = mid
                        if hi - lo < 1:
-                               use GiveUp
+                               lo = mid
+                               use .GiveUp
                        use True
                do pass
-               case Found:
+               case .Found:
                        print "Yay, I found", target
-               case GiveUp:
-                       print "Closest I found was", mid
+               case .GiveUp:
+                       print "Closest I found was", lo
 
                size::= 10
                list:[size]number