]> ocean-lang.org Git - ocean/blobdiff - csrc/oceani.mdc
oceani: rename Enoconst to Eruntime
[ocean] / csrc / oceani.mdc
index f5983440c25ea87ef0dcae5489b70012f40d3e12..dca205570c9af2c1ae704e0a58c04f01bdd96782 100644 (file)
@@ -41,10 +41,12 @@ short-circuit Boolean operators, and the "if ... else" trinary
 operator which can select between two expressions based on a third
 (which appears syntactically in the middle).
 
-Elements that are present purely to make a usable language, and
-without any expectation that they will remain, are the "program'
-clause, which provides a list of variables to received command-line
-arguments, and the "print" statement which performs simple output.
+The "func" clause currently only allows a "main" function to be
+declared.  That will be extended when proper function support is added.
+
+An element that is present purely to make a usable language, and
+without any expectation that they will remain, is the "print" statement
+which performs simple output.
 
 The current scalar types are "number", "Boolean", and "string".
 Boolean will likely stay in its current form, the other two might, but
@@ -72,7 +74,8 @@ So the main requirements of the interpreter are:
 - Parse the program, possibly with tracing,
 - Analyse the parsed program to ensure consistency,
 - Print the program,
-- Execute the program, if no parsing or consistency errors were found.
+- Execute the "main" function in the program, if no parsing or
+  consistency errors were found.
 
 This is all performed by a single C program extracted with
 `parsergen`.
@@ -81,7 +84,7 @@ There will be two formats for printing the program: a default and one
 that uses bracketing.  So a `--bracket` command line option is needed
 for that.  Normally the first code section found is used, however an
 alternate section can be requested so that a file (such as this one)
-can contain multiple programs This is effected with the `--section`
+can contain multiple programs This is effected with the `--section`
 option.
 
 This code must be compiled with `-fplan9-extensions` so that anonymous
@@ -105,12 +108,13 @@ structures can be used.
 
 ###### Parser: header
        ## macros
+       struct parse_context;
        ## ast
+       ## ast late
        struct parse_context {
                struct token_config config;
                char *file_name;
                int parse_error;
-               struct exec *prog;
                ## parse context
        };
 
@@ -127,7 +131,7 @@ structures can be used.
        struct parse_context *c = config2context(config);
 
 ###### Parser: code
-
+       #define _GNU_SOURCE
        #include <unistd.h>
        #include <stdlib.h>
        #include <fcntl.h>
@@ -151,8 +155,8 @@ structures can be used.
        ## core functions
 
        #include <getopt.h>
-       static char Usage[] = "Usage: oceani --trace --print --noexec --brackets"
-                             "--section=SectionName prog.ocn\n";
+       static char Usage[] =
+               "Usage: oceani --trace --print --noexec --brackets --section=SectionName prog.ocn\n";
        static const struct option long_options[] = {
                {"trace",     0, NULL, 't'},
                {"print",     0, NULL, 'p'},
@@ -162,18 +166,22 @@ structures can be used.
                {NULL,        0, NULL, 0},
        };
        const char *options = "tpnbs";
+
+       static void pr_err(char *msg)                   // NOTEST
+       {
+               fprintf(stderr, "%s\n", msg);           // NOTEST
+       }                                               // NOTEST
+
        int main(int argc, char *argv[])
        {
                int fd;
                int len;
                char *file;
-               struct section *s, *ss;
+               struct section *s = NULL, *ss;
                char *section = NULL;
                struct parse_context context = {
                        .config = {
-                               .ignored = (1 << TK_line_comment)
-                                        | (1 << TK_block_comment)
-                                        | (1 << TK_mark),
+                               .ignored = (1 << TK_mark),
                                .number_chars = ".,_+- ",
                                .word_start = "_",
                                .word_cont = "_",
@@ -205,7 +213,7 @@ structures can be used.
                context.file_name = argv[optind];
                len = lseek(fd, 0, 2);
                file = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
-               s = code_extract(file, file+len, NULL);
+               s = code_extract(file, file+len, pr_err);
                if (!s) {
                        fprintf(stderr, "oceani: could not find any code in %s\n",
                                argv[optind]);
@@ -224,38 +232,45 @@ structures can be used.
                        if (!ss) {
                                fprintf(stderr, "oceani: cannot find section %s\n",
                                        section);
-                               exit(1);
+                               goto cleanup;
                        }
                } else
-                       ss = s;
+                       ss = s;                         // NOTEST
+               if (!ss->code) {
+                       fprintf(stderr, "oceani: no code found in requested section\n");        // NOTEST
+                       goto cleanup;                   // NOTEST
+               }
+
                parse_oceani(ss->code, &context.config, dotrace ? stderr : NULL);
 
-               if (!context.prog) {
-                       fprintf(stderr, "oceani: no program found.\n");
-                       context.parse_error = 1;
+               resolve_consts(&context);
+               prepare_types(&context);
+               if (!context.parse_error && !analyse_funcs(&context)) {
+                       fprintf(stderr, "oceani: type error in program - not running.\n");
+                       context.parse_error += 1;
                }
-               if (context.prog && doprint) {
+
+               if (doprint) {
                        ## print const decls
                        ## print type decls
-                       print_exec(context.prog, 0, brackets);
-               }
-               if (context.prog && doexec && !context.parse_error) {
-                       if (!analyse_prog(context.prog, &context)) {
-                               fprintf(stderr, "oceani: type error in program - not running.\n");
-                               exit(1);
-                       }
-                       interp_prog(context.prog, argv+optind+1);
+                       ## print func decls
                }
-               free_exec(context.prog);
-
+               if (doexec && !context.parse_error)
+                       interp_main(&context, argc - optind, argv + optind);
+       cleanup:
                while (s) {
                        struct section *t = s->next;
                        code_free(s->code);
                        free(s);
                        s = t;
                }
-               ## free context vars
+               // FIXME parser should pop scope even on error
+               while (context.scope_depth > 0)
+                       scope_pop(&context);
+               ## free global vars
+               ## free const decls
                ## free context types
+               ## free context storage
                exit(context.parse_error ? 1 : 0);
        }
 
@@ -283,20 +298,12 @@ and the program will not run.
 
 If the same variable is declared in both branchs of an 'if/else', or
 in all cases of a 'switch' then the multiple instances may be merged
-into just one variable if the variable is references after the
+into just one variable if the variable is referenced after the
 conditional statement.  When this happens, the types must naturally be
 consistent across all the branches.  When the variable is not used
 outside the if, the variables in the different branches are distinct
 and can be of different types.
 
-Determining the types of all variables early is important for
-processing command line arguments.  These can be assigned to any of
-several types of variable, but we must first know the correct type so
-any required conversion can happen.  If a variable is associated with
-a command line argument but no type can be interpreted (e.g. the
-variable is only ever used in a `print` statement), then the type is
-set to 'string'.
-
 Undeclared names may only appear in "use" statements and "case" expressions.
 These names are given a type of "label" and a unique value.
 This allows them to fill the role of a name in an enumerated type, which
@@ -342,10 +349,10 @@ errors, each language element will need to record a file location
 element where its type was set.  For now we will assume that each line
 of an error message indicates one location in the file, and up to 2
 types.  So we provide a `printf`-like function which takes a format, a
-language (a `struct exec` which has not yet been introduced), and 2
+location (a `struct exec` which has not yet been introduced), and 2
 types. "`%1`" reports the first type, "`%2`" reports the second.  We
 will need a function to print the location, once we know how that is
-stored.  As will be explained later, there are sometimes extra rules for
+stored. e As will be explained later, there are sometimes extra rules for
 type matching and they might affect error messages, we need to pass those
 in too.
 
@@ -358,6 +365,10 @@ context so indicate that parsing failed.
 ###### forward decls
 
        static void fput_loc(struct exec *loc, FILE *f);
+       static void type_err(struct parse_context *c,
+                            char *fmt, struct exec *loc,
+                            struct type *t1, int rules, struct type *t2);
+       static void tok_err(struct parse_context *c, char *fmt, struct token *t);
 
 ###### core functions
 
@@ -386,14 +397,14 @@ context so indicate that parsing failed.
                        }
                }
                fputs("\n", stderr);
-               c->parse_error = 1;
+               c->parse_error += 1;
        }
 
        static void tok_err(struct parse_context *c, char *fmt, struct token *t)
        {
                fprintf(stderr, "%s:%d:%d: %s: %.*s\n", c->file_name, t->line, t->col, fmt,
                        t->txt.len, t->txt.txt);
-               c->parse_error = 1;
+               c->parse_error += 1;
        }
 
 ## Entities: declared and predeclared.
@@ -402,467 +413,1043 @@ There are various "things" that the language and/or the interpreter
 needs to know about to parse and execute a program.  These include
 types, variables, values, and executable code.  These are all lumped
 together under the term "entities" (calling them "objects" would be
-confusing) and introduced here.  These will introduced and described
-here.  The following section will present the different specific code
-elements which comprise or manipulate these various entities.
+confusing) and introduced here.  The following section will present the
+different specific code elements which comprise or manipulate these
+various entities.
 
-### Types
+### Executables
 
-Values come in a wide range of types, with more likely to be added.
-Each type needs to be able to parse and print its own values (for
-convenience at least) as well as to compare two values, at least for
-equality and possibly for order.  For now, values might need to be
-duplicated and freed, though eventually such manipulations will be
-better integrated into the language.
+Executables can be lots of different things.  In many cases an
+executable is just an operation combined with one or two other
+executables.  This allows for expressions and lists etc.  Other times an
+executable is something quite specific like a constant or variable name.
+So we define a `struct exec` to be a general executable with a type, and
+a `struct binode` which is a subclass of `exec`, forms a node in a
+binary tree, and holds an operation.  There will be other subclasses,
+and to access these we need to be able to `cast` the `exec` into the
+various other types.  The first field in any `struct exec` is the type
+from the `exec_types` enum.
 
-Rather than requiring every numeric type to support all numeric
-operations (add, multiple, etc), we allow types to be able to present
-as one of a few standard types: integer, float, and fraction.  The
-existence of these conversion functions eventaully enable types to
-determine if they are compatible with other types, though such types
-have not yet been implemented.
+###### macros
+       #define cast(structname, pointer) ({            \
+               const typeof( ((struct structname *)0)->type) *__mptr = &(pointer)->type; \
+               if (__mptr && *__mptr != X##structname) abort();                \
+               (struct structname *)( (char *)__mptr);})
+
+       #define new(structname) ({                                              \
+               struct structname *__ptr = ((struct structname *)calloc(1,sizeof(struct structname))); \
+               __ptr->type = X##structname;                                            \
+               __ptr->line = -1; __ptr->column = -1;                                   \
+               __ptr;})
 
-Named type are stored in a simple linked list.  Objects of each type are "values"
-which are often passed around by value.
+       #define new_pos(structname, token) ({                                           \
+               struct structname *__ptr = ((struct structname *)calloc(1,sizeof(struct structname))); \
+               __ptr->type = X##structname;                                            \
+               __ptr->line = token.line; __ptr->column = token.col;                    \
+               __ptr;})
 
 ###### ast
-
-       struct value {
-               struct type *type;
-               union {
-                       ## value union fields
-               };
+       enum exec_types {
+               Xbinode,
+               ## exec type
        };
-
-       struct type {
-               struct text name;
-               struct type *next;
-               struct value (*init)(struct type *type);
-               struct value (*prepare)(struct type *type);
-               struct value (*parse)(struct type *type, char *str);
-               void (*print)(struct value val);
-               void (*print_type)(struct type *type, FILE *f);
-               int (*cmp_order)(struct value v1, struct value v2);
-               int (*cmp_eq)(struct value v1, struct value v2);
-               struct value (*dup)(struct value val);
-               void (*free)(struct value val);
-               void (*free_type)(struct type *t);
-               int (*compat)(struct type *this, struct type *other);
-               long long (*to_int)(struct value *v);
-               double (*to_float)(struct value *v);
-               int (*to_mpq)(mpq_t *q, struct value *v);
-               ## type functions
-               union {
-                       ## type union fields
-               };
+       struct exec {
+               enum exec_types type;
+               int line, column;
+               ## exec fields
+       };
+       struct binode {
+               struct exec;
+               enum Btype {
+                       ## Binode types
+               } op;
+               struct exec *left, *right;
        };
-
-###### parse context
-
-       struct type *typelist;
 
 ###### ast functions
 
-       static struct type *find_type(struct parse_context *c, struct text s)
+       static int __fput_loc(struct exec *loc, FILE *f)
        {
-               struct type *l = c->typelist;
-
-               while (l &&
-                      text_cmp(l->name, s) != 0)
-                               l = l->next;
-               return l;
+               if (!loc)
+                       return 0;
+               if (loc->line >= 0) {
+                       fprintf(f, "%d:%d: ", loc->line, loc->column);
+                       return 1;
+               }
+               if (loc->type == Xbinode)
+                       return __fput_loc(cast(binode,loc)->left, f) ||
+                              __fput_loc(cast(binode,loc)->right, f);  // NOTEST
+               return 0;       // NOTEST
        }
-
-       static struct type *add_type(struct parse_context *c, struct text s,
-                                    struct type *proto)
+       static void fput_loc(struct exec *loc, FILE *f)
        {
-               struct type *n;
-
-               n = calloc(1, sizeof(*n));
-               *n = *proto;
-               n->name = s;
-               n->next = c->typelist;
-               c->typelist = n;
-               return n;
+               if (!__fput_loc(loc, f))
+                       fprintf(f, "??:??: ");  // NOTEST
        }
 
-       static void free_type(struct type *t)
-       {
-               /* The type is always a reference to something in the
-                * context, so we don't need to free anything.
-                */
-       }
+Each different type of `exec` node needs a number of functions defined,
+a bit like methods.  We must be able to free it, print it, analyse it
+and execute it.  Once we have specific `exec` types we will need to
+parse them too.  Let's take this a bit more slowly.
 
-       static void free_value(struct value v)
-       {
-               if (v.type)
-                       v.type->free(v);
-       }
+#### Freeing
 
-       static int type_compat(struct type *require, struct type *have, int rules)
-       {
-               if ((rules & Rboolok) && have == Tbool)
-                       return 1;
-               if ((rules & Rnolabel) && have == Tlabel)
-                       return 0;
-               if (!require || !have)
-                       return 1;
+The parser generator requires a `free_foo` function for each struct
+that stores attributes and they will often be `exec`s and subtypes
+there-of.  So we need `free_exec` which can handle all the subtypes,
+and we need `free_binode`.
 
-               if (require->compat)
-                       return require->compat(require, have);
+###### ast functions
 
-               return require == have;
+       static void free_binode(struct binode *b)
+       {
+               if (!b)
+                       return;
+               free_exec(b->left);
+               free_exec(b->right);
+               free(b);
        }
 
-       static void type_print(struct type *type, FILE *f)
+###### core functions
+       static void free_exec(struct exec *e)
        {
-               if (!type)
-                       fputs("*unknown*type*", f);
-               else if (type->name.len)
-                       fprintf(f, "%.*s", type->name.len, type->name.txt);
-               else if (type->print_type)
-                       type->print_type(type, f);
-               else
-                       fputs("*invalid*type*", f);     // NOTEST
+               if (!e)
+                       return;
+               switch(e->type) {
+                       ## free exec cases
+               }
        }
 
-       static struct value val_prepare(struct type *type)
-       {
-               struct value rv;
+###### forward decls
 
-               if (type)
-                       return type->prepare(type);
-               rv.type = type;
-               return rv;
-       }
+       static void free_exec(struct exec *e);
 
-       static struct value val_init(struct type *type)
-       {
-               struct value rv;
+###### free exec cases
+       case Xbinode: free_binode(cast(binode, e)); break;
 
-               if (type)
-                       return type->init(type);
-               rv.type = type;
-               return rv;
-       }
+#### Printing
 
-       static struct value dup_value(struct value v)
-       {
-               if (v.type)
-                       return v.type->dup(v);
-               return v;
-       }
+Printing an `exec` requires that we know the current indent level for
+printing line-oriented components.  As will become clear later, we
+also want to know what sort of bracketing to use.
+
+###### ast functions
 
-       static int value_cmp(struct value left, struct value right)
+       static void do_indent(int i, char *str)
        {
-               if (left.type && left.type->cmp_order)
-                       return left.type->cmp_order(left, right);
-               if (left.type && left.type->cmp_eq)
-                       return left.type->cmp_eq(left, right);
-               return -1;
+               while (i-- > 0)
+                       printf("    ");
+               printf("%s", str);
        }
 
-       static void print_value(struct value v)
+###### core functions
+       static void print_binode(struct binode *b, int indent, int bracket)
        {
-               if (v.type && v.type->print)
-                       v.type->print(v);
-               else
-                       printf("*Unknown*");            // NOTEST
+               struct binode *b2;
+               switch(b->op) {
+               ## print binode cases
+               }
        }
 
-       static struct value parse_value(struct type *type, char *arg)
+       static void print_exec(struct exec *e, int indent, int bracket)
        {
-               struct value rv;
-
-               if (type && type->parse)
-                       return type->parse(type, arg);
-               rv.type = NULL;                         // NOTEST
-               return rv;                              // NOTEST
+               if (!e)
+                       return;
+               switch (e->type) {
+               case Xbinode:
+                       print_binode(cast(binode, e), indent, bracket); break;
+               ## print exec cases
+               }
+               if (e->to_free) {
+                       struct variable *v;
+                       do_indent(indent, "/* FREE");
+                       for (v = e->to_free; v; v = v->next_free) {
+                               printf(" %.*s", v->name->name.len, v->name->name.txt);
+                               printf("[%d,%d]", v->scope_start, v->scope_end);
+                               if (v->frame_pos >= 0)
+                                       printf("(%d+%d)", v->frame_pos,
+                                              v->type ? v->type->size:0);
+                       }
+                       printf(" */\n");
+               }
        }
 
 ###### forward decls
 
-       static void free_value(struct value v);
-       static int type_compat(struct type *require, struct type *have, int rules);
-       static void type_print(struct type *type, FILE *f);
-       static struct value val_init(struct type *type);
-       static struct value dup_value(struct value v);
-       static int value_cmp(struct value left, struct value right);
-       static void print_value(struct value v);
-       static struct value parse_value(struct type *type, char *arg);
-
-###### free context types
-
-       while (context.typelist) {
-               struct type *t = context.typelist;
-
-               context.typelist = t->next;
-               if (t->free_type)
-                       t->free_type(t);
-               free(t);
-       }
-
-#### Base Types
+       static void print_exec(struct exec *e, int indent, int bracket);
 
-Values of the base types can be numbers, which we represent as
-multi-precision fractions, strings, Booleans and labels.  When
-analysing the program we also need to allow for places where no value
-is meaningful (type `Tnone`) and where we don't know what type to
-expect yet (type is `NULL`).
+#### Analysing
 
-Values are never shared, they are always copied when used, and freed
-when no longer needed.
+As discussed, analysis involves propagating type requirements around the
+program and looking for errors.
 
-When propagating type information around the program, we need to
-determine if two types are compatible, where type `NULL` is compatible
-with anything.  There are two special cases with type compatibility,
-both related to the Conditional Statement which will be described
-later.  In some cases a Boolean can be accepted as well as some other
-primary type, and in others any type is acceptable except a label (`Vlabel`).
-A separate function encoding these cases will simplify some code later.
+So `propagate_types` is passed an expected type (being a `struct type`
+pointer together with some `val_rules` flags) that the `exec` is
+expected to return, and returns the type that it does return, either of
+which can be `NULL` signifying "unknown".  A `prop_err` flag set is
+passed by reference.  It has `Efail` set when an error is found, and
+`Eretry` when the type for some element is set via propagation.  If
+any expression cannot be evaluated a compile time, `Eruntime` is set.
+If the expression can be copied, `Emaycopy` is set.
 
-When assigning command line arguments to variables, we need to be able
-to parse each type from a string.
+If it remains unchanged at `0`, then no more propagation is needed.
 
-The distinction beteen "prepare" and "init" needs to be explained.
-"init" sets up an initial value, such as "zero" or the empty string.
-"prepare" simply prepares the data structure so that if "free" gets
-called on it, it won't do something silly.  Normally a value will be
-stored after "prepare" but before "free", but this might not happen if
-there are errors.
+###### ast
 
-###### includes
-       #include <gmp.h>
-       #include "string.h"
-       #include "number.h"
+       enum val_rules {Rboolok = 1<<1, Rnoconstant = 1<<2};
+       enum prop_err {Efail = 1<<0, Eretry = 1<<1, Eruntime = 1<<2,
+                      Emaycopy = 1<<3};
 
-###### libs
-       myLDLIBS := libnumber.o libstring.o -lgmp
-       LDLIBS := $(filter-out $(myLDLIBS),$(LDLIBS)) $(myLDLIBS)
+###### forward decls
+       static struct type *propagate_types(struct exec *prog, struct parse_context *c, enum prop_err *perr,
+                                           struct type *type, int rules);
+###### core functions
 
-###### type union fields
-       enum vtype {Vnone, Vstr, Vnum, Vbool, Vlabel} vtype;
+       static struct type *__propagate_types(struct exec *prog, struct parse_context *c, enum prop_err *perr,
+                                             struct type *type, int rules)
+       {
+               struct type *t;
 
-###### value union fields
-       struct text str;
-       mpq_t num;
-       int bool;
-       void *label;
+               if (!prog)
+                       return Tnone;
 
-###### ast functions
-       static void _free_value(struct value v)
-       {
-               switch (v.type->vtype) {
-               case Vnone: break;
-               case Vstr: free(v.str.txt); break;
-               case Vnum: mpq_clear(v.num); break;
-               case Vlabel:
-               case Vbool: break;
+               switch (prog->type) {
+               case Xbinode:
+               {
+                       struct binode *b = cast(binode, prog);
+                       switch (b->op) {
+                       ## propagate binode cases
+                       }
+                       break;
+               }
+               ## propagate exec cases
                }
+               return Tnone;
        }
 
-###### value functions
-
-       static struct value _val_prepare(struct type *type)
+       static struct type *propagate_types(struct exec *prog, struct parse_context *c, enum prop_err *perr,
+                                           struct type *type, int rules)
        {
-               struct value rv;
+               int pre_err = c->parse_error;
+               struct type *ret = __propagate_types(prog, c, perr, type, rules);
 
-               rv.type = type;
-               switch(type->vtype) {
-               case Vnone:
-                       break;
-               case Vnum:
-                       memset(&rv.num, 0, sizeof(rv.num));
-                       break;
-               case Vstr:
-                       rv.str.txt = NULL;
-                       rv.str.len = 0;
-                       break;
-               case Vbool:
-                       rv.bool = 0;
-                       break;
-               case Vlabel:
-                       rv.label = NULL;
+               if (c->parse_error > pre_err)
+                       *perr |= Efail;
+               return ret;
+       }
+
+#### Interpreting
+
+Interpreting an `exec` doesn't require anything but the `exec`.  State
+is stored in variables and each variable will be directly linked from
+within the `exec` tree.  The exception to this is the `main` function
+which needs to look at command line arguments.  This function will be
+interpreted separately.
+
+Each `exec` can return a value combined with a type in `struct lrval`.
+The type may be `Tnone` but must be non-NULL.  Some `exec`s will return
+the location of a value, which can be updated, in `lval`.  Others will
+set `lval` to NULL indicating that there is a value of appropriate type
+in `rval`.
+
+###### forward decls
+       static struct value interp_exec(struct parse_context *c, struct exec *e,
+                                       struct type **typeret);
+###### core functions
+
+       struct lrval {
+               struct type *type;
+               struct value rval, *lval;
+       };
+
+       /* If dest is passed, dtype must give the expected type, and
+        * result can go there, in which case type is returned as NULL.
+        */
+       static struct lrval _interp_exec(struct parse_context *c, struct exec *e,
+                                        struct value *dest, struct type *dtype);
+
+       static struct value interp_exec(struct parse_context *c, struct exec *e,
+                                       struct type **typeret)
+       {
+               struct lrval ret = _interp_exec(c, e, NULL, NULL);
+
+               if (!ret.type) abort();
+               if (typeret)
+                       *typeret = ret.type;
+               if (ret.lval)
+                       dup_value(ret.type, ret.lval, &ret.rval);
+               return ret.rval;
+       }
+
+       static struct value *linterp_exec(struct parse_context *c, struct exec *e,
+                                         struct type **typeret)
+       {
+               struct lrval ret = _interp_exec(c, e, NULL, NULL);
+
+               if (!ret.type) abort();
+               if (ret.lval)
+                       *typeret = ret.type;
+               else
+                       free_value(ret.type, &ret.rval);
+               return ret.lval;
+       }
+
+       /* dinterp_exec is used when the destination type is certain and
+        * the value has a place to go.
+        */
+       static void dinterp_exec(struct parse_context *c, struct exec *e,
+                                struct value *dest, struct type *dtype,
+                                int need_free)
+       {
+               struct lrval ret = _interp_exec(c, e, dest, dtype);
+               if (!ret.type)
+                       return;
+               if (need_free)
+                       free_value(dtype, dest);
+               if (ret.lval)
+                       dup_value(dtype, ret.lval, dest);
+               else
+                       memcpy(dest, &ret.rval, dtype->size);
+       }
+
+       static struct lrval _interp_exec(struct parse_context *c, struct exec *e,
+                                        struct value *dest, struct type *dtype)
+       {
+               /* If the result is copied to dest, ret.type is set to NULL */
+               struct lrval ret;
+               struct value rv = {}, *lrv = NULL;
+               struct type *rvtype;
+
+               rvtype = ret.type = Tnone;
+               if (!e) {
+                       ret.lval = lrv;
+                       ret.rval = rv;
+                       return ret;
+               }
+
+               switch(e->type) {
+               case Xbinode:
+               {
+                       struct binode *b = cast(binode, e);
+                       struct value left, right, *lleft;
+                       struct type *ltype, *rtype;
+                       ltype = rtype = Tnone;
+                       switch (b->op) {
+                       ## interp binode cases
+                       }
+                       free_value(ltype, &left);
+                       free_value(rtype, &right);
                        break;
                }
-               return rv;
+               ## interp exec cases
+               }
+               if (rvtype) {
+                       ret.lval = lrv;
+                       ret.rval = rv;
+                       ret.type = rvtype;
+               }
+               ## interp exec cleanup
+               return ret;
+       }
+
+### Types
+
+Values come in a wide range of types, with more likely to be added.
+Each type needs to be able to print its own values (for convenience at
+least) as well as to compare two values, at least for equality and
+possibly for order.  For now, values might need to be duplicated and
+freed, though eventually such manipulations will be better integrated
+into the language.
+
+Rather than requiring every numeric type to support all numeric
+operations (add, multiply, etc), we allow types to be able to present
+as one of a few standard types: integer, float, and fraction.  The
+existence of these conversion functions eventually enable types to
+determine if they are compatible with other types, though such types
+have not yet been implemented.
+
+Named type are stored in a simple linked list.  Objects of each type are
+"values" which are often passed around by value.
+
+There are both explicitly named types, and anonymous types.  Anonymous
+cannot be accessed by name, but are used internally and have a name
+which might be reported in error messages.
+
+###### ast
+
+       struct value {
+               union {
+                       char ptr[1];
+                       ## value union fields
+               };
+       };
+
+###### ast late
+       struct type {
+               struct text name;
+               struct type *next;
+               struct token first_use;
+               int size, align;
+               int anon;
+               void (*init)(struct type *type, struct value *val);
+               int (*prepare_type)(struct parse_context *c, struct type *type, int parse_time);
+               void (*print)(struct type *type, struct value *val, FILE *f);
+               void (*print_type)(struct type *type, FILE *f);
+               int (*cmp_order)(struct type *t1, struct type *t2,
+                                struct value *v1, struct value *v2);
+               int (*cmp_eq)(struct type *t1, struct type *t2,
+                             struct value *v1, struct value *v2);
+               void (*dup)(struct type *type, struct value *vold, struct value *vnew);
+               int (*test)(struct type *type, struct value *val);
+               void (*free)(struct type *type, struct value *val);
+               void (*free_type)(struct type *t);
+               long long (*to_int)(struct value *v);
+               double (*to_float)(struct value *v);
+               int (*to_mpq)(mpq_t *q, struct value *v);
+               ## type functions
+               union {
+                       ## type union fields
+               };
+       };
+
+###### parse context
+
+       struct type *typelist;
+
+###### includes
+       #include <stdarg.h>
+
+###### ast functions
+
+       static struct type *find_type(struct parse_context *c, struct text s)
+       {
+               struct type *t = c->typelist;
+
+               while (t && (t->anon ||
+                            text_cmp(t->name, s) != 0))
+                               t = t->next;
+               return t;
+       }
+
+       static struct type *_add_type(struct parse_context *c, struct text s,
+                                    struct type *proto, int anon)
+       {
+               struct type *n;
+
+               n = calloc(1, sizeof(*n));
+               if (proto)
+                       *n = *proto;
+               else
+                       n->size = -1;
+               n->name = s;
+               n->anon = anon;
+               n->next = c->typelist;
+               c->typelist = n;
+               return n;
+       }
+
+       static struct type *add_type(struct parse_context *c, struct text s,
+                                     struct type *proto)
+       {
+               return _add_type(c, s, proto, 0);
+       }
+
+       static struct type *add_anon_type(struct parse_context *c,
+                                         struct type *proto, char *name, ...)
+       {
+               struct text t;
+               va_list ap;
+
+               va_start(ap, name);
+               vasprintf(&t.txt, name, ap);
+               va_end(ap);
+               t.len = strlen(t.txt);
+               return _add_type(c, t, proto, 1);
+       }
+
+       static struct type *find_anon_type(struct parse_context *c,
+                                          struct type *proto, char *name, ...)
+       {
+               struct type *t = c->typelist;
+               struct text nm;
+               va_list ap;
+
+               va_start(ap, name);
+               vasprintf(&nm.txt, name, ap);
+               va_end(ap);
+               nm.len = strlen(name);
+
+               while (t && (!t->anon ||
+                            text_cmp(t->name, nm) != 0))
+                               t = t->next;
+               if (t) {
+                       free(nm.txt);
+                       return t;
+               }
+               return _add_type(c, nm, proto, 1);
+       }
+
+       static void free_type(struct type *t)
+       {
+               /* The type is always a reference to something in the
+                * context, so we don't need to free anything.
+                */
+       }
+
+       static void free_value(struct type *type, struct value *v)
+       {
+               if (type && v) {
+                       type->free(type, v);
+                       memset(v, 0x5a, type->size);
+               }
+       }
+
+       static void type_print(struct type *type, FILE *f)
+       {
+               if (!type)
+                       fputs("*unknown*type*", f);     // NOTEST
+               else if (type->name.len && !type->anon)
+                       fprintf(f, "%.*s", type->name.len, type->name.txt);
+               else if (type->print_type)
+                       type->print_type(type, f);
+               else if (type->name.len && type->anon)
+                       fprintf(f, "\"%.*s\"", type->name.len, type->name.txt);
+               else
+                       fputs("*invalid*type*", f);     // NOTEST
+       }
+
+       static void val_init(struct type *type, struct value *val)
+       {
+               if (type && type->init)
+                       type->init(type, val);
+       }
+
+       static void dup_value(struct type *type,
+                             struct value *vold, struct value *vnew)
+       {
+               if (type && type->dup)
+                       type->dup(type, vold, vnew);
+       }
+
+       static int value_cmp(struct type *tl, struct type *tr,
+                            struct value *left, struct value *right)
+       {
+               if (tl && tl->cmp_order)
+                       return tl->cmp_order(tl, tr, left, right);
+               if (tl && tl->cmp_eq)
+                       return tl->cmp_eq(tl, tr, left, right);
+               return -1;                              // NOTEST
+       }
+
+       static void print_value(struct type *type, struct value *v, FILE *f)
+       {
+               if (type && type->print)
+                       type->print(type, v, f);
+               else
+                       fprintf(f, "*Unknown*");                // NOTEST
+       }
+
+       static void prepare_types(struct parse_context *c)
+       {
+               struct type *t;
+               int retry = 1;
+               enum { none, some, cannot } progress = none;
+
+               while (retry) {
+                       retry = 0;
+
+                       for (t = c->typelist; t; t = t->next) {
+                               if (t->size < 0)
+                                       tok_err(c, "error: type used but not declared",
+                                                &t->first_use);
+                               if (t->size == 0 && t->prepare_type) {
+                                       if (t->prepare_type(c, t, 1))
+                                               progress = some;
+                                       else if (progress == cannot)
+                                               tok_err(c, "error: type has recursive definition",
+                                                       &t->first_use);
+                                       else
+                                               retry = 1;
+                               }
+                       }
+                       switch (progress) {
+                       case cannot:
+                               retry = 0; break;
+                       case none:
+                               progress = cannot; break;
+                       case some:
+                               progress = none; break;
+                       }
+               }
+       }
+
+###### forward decls
+
+       static void free_value(struct type *type, struct value *v);
+       static int type_compat(struct type *require, struct type *have, int rules);
+       static void type_print(struct type *type, FILE *f);
+       static void val_init(struct type *type, struct value *v);
+       static void dup_value(struct type *type,
+                             struct value *vold, struct value *vnew);
+       static int value_cmp(struct type *tl, struct type *tr,
+                            struct value *left, struct value *right);
+       static void print_value(struct type *type, struct value *v, FILE *f);
+
+###### free context types
+
+       while (context.typelist) {
+               struct type *t = context.typelist;
+
+               context.typelist = t->next;
+               if (t->free_type)
+                       t->free_type(t);
+               if (t->anon)
+                       free(t->name.txt);
+               free(t);
+       }
+
+Type can be specified for local variables, for fields in a structure,
+for formal parameters to functions, and possibly elsewhere.  Different
+rules may apply in different contexts.  As a minimum, a named type may
+always be used.  Currently the type of a formal parameter can be
+different from types in other contexts, so we have a separate grammar
+symbol for those.
+
+###### Grammar
+
+       $*type
+       Type -> IDENTIFIER ${
+               $0 = find_type(c, $ID.txt);
+               if (!$0) {
+                       $0 = add_type(c, $ID.txt, NULL);
+                       $0->first_use = $ID;
+               }
+       }$
+       ## type grammar
+
+       FormalType -> Type ${ $0 = $<1; }$
+       ## formal type grammar
+
+#### Base Types
+
+Values of the base types can be numbers, which we represent as
+multi-precision fractions, strings, Booleans and labels.  When
+analysing the program we also need to allow for places where no value
+is meaningful (type `Tnone`) and where we don't know what type to
+expect yet (type is `NULL`).
+
+Values are never shared, they are always copied when used, and freed
+when no longer needed.
+
+When propagating type information around the program, we need to
+determine if two types are compatible, where type `NULL` is compatible
+with anything.  There are two special cases with type compatibility,
+both related to the Conditional Statement which will be described
+later.  In some cases a Boolean can be accepted as well as some other
+primary type, and in others any type is acceptable except a label (`Vlabel`).
+A separate function encoding these cases will simplify some code later.
+
+###### type functions
+
+       int (*compat)(struct type *this, struct type *other);
+
+###### ast functions
+
+       static int type_compat(struct type *require, struct type *have, int rules)
+       {
+               if ((rules & Rboolok) && have == Tbool)
+                       return 1;       // NOTEST
+               if (!require || !have)
+                       return 1;
+
+               if (require->compat)
+                       return require->compat(require, have);
+
+               return require == have;
        }
 
-       static struct value _val_init(struct type *type)
+###### includes
+       #include <gmp.h>
+       #include "parse_string.h"
+       #include "parse_number.h"
+
+###### libs
+       myLDLIBS := libnumber.o libstring.o -lgmp
+       LDLIBS := $(filter-out $(myLDLIBS),$(LDLIBS)) $(myLDLIBS)
+
+###### type union fields
+       enum vtype {Vnone, Vstr, Vnum, Vbool, Vlabel} vtype;
+
+###### value union fields
+       struct text str;
+       mpq_t num;
+       unsigned char bool;
+       int label;
+
+###### ast functions
+       static void _free_value(struct type *type, struct value *v)
        {
-               struct value rv;
+               if (!v)
+                       return;         // NOTEST
+               switch (type->vtype) {
+               case Vnone: break;
+               case Vstr: free(v->str.txt); break;
+               case Vnum: mpq_clear(v->num); break;
+               case Vlabel:
+               case Vbool: break;
+               }
+       }
+
+###### value functions
 
-               rv.type = type;
+       static void _val_init(struct type *type, struct value *val)
+       {
                switch(type->vtype) {
                case Vnone:             // NOTEST
                        break;          // NOTEST
                case Vnum:
-                       mpq_init(rv.num); break;
+                       mpq_init(val->num); break;
                case Vstr:
-                       rv.str.txt = malloc(1);
-                       rv.str.len = 0;
+                       val->str.txt = malloc(1);
+                       val->str.len = 0;
                        break;
                case Vbool:
-                       rv.bool = 0;
+                       val->bool = 0;
                        break;
-               case Vlabel:                    // NOTEST
-                       rv.label = NULL;        // NOTEST
-                       break;                  // NOTEST
+               case Vlabel:
+                       val->label = 0; // NOTEST
+                       break;          // NOTEST
                }
-               return rv;
        }
 
-       static struct value _dup_value(struct value v)
+       static void _dup_value(struct type *type,
+                              struct value *vold, struct value *vnew)
        {
-               struct value rv;
-               rv.type = v.type;
-               switch (rv.type->vtype) {
+               switch (type->vtype) {
                case Vnone:             // NOTEST
                        break;          // NOTEST
                case Vlabel:
-                       rv.label = v.label;
-                       break;
+                       vnew->label = vold->label;      // NOTEST
+                       break;          // NOTEST
                case Vbool:
-                       rv.bool = v.bool;
+                       vnew->bool = vold->bool;
                        break;
                case Vnum:
-                       mpq_init(rv.num);
-                       mpq_set(rv.num, v.num);
+                       mpq_init(vnew->num);
+                       mpq_set(vnew->num, vold->num);
                        break;
                case Vstr:
-                       rv.str.len = v.str.len;
-                       rv.str.txt = malloc(rv.str.len);
-                       memcpy(rv.str.txt, v.str.txt, v.str.len);
+                       vnew->str.len = vold->str.len;
+                       vnew->str.txt = malloc(vnew->str.len);
+                       memcpy(vnew->str.txt, vold->str.txt, vnew->str.len);
                        break;
                }
-               return rv;
        }
 
-       static int _value_cmp(struct value left, struct value right)
+       static int _value_cmp(struct type *tl, struct type *tr,
+                             struct value *left, struct value *right)
+       {
+               int cmp;
+               if (tl != tr)
+                       return tl - tr; // NOTEST
+               switch (tl->vtype) {
+               case Vlabel: cmp = left->label == right->label ? 0 : 1; break;
+               case Vnum: cmp = mpq_cmp(left->num, right->num); break;
+               case Vstr: cmp = text_cmp(left->str, right->str); break;
+               case Vbool: cmp = left->bool - right->bool; break;
+               case Vnone: cmp = 0;                    // NOTEST
+               }
+               return cmp;
+       }
+
+       static void _print_value(struct type *type, struct value *v, FILE *f)
+       {
+               switch (type->vtype) {
+               case Vnone:                             // NOTEST
+                       fprintf(f, "*no-value*"); break;        // NOTEST
+               case Vlabel:                            // NOTEST
+                       fprintf(f, "*label-%d*", v->label); break; // NOTEST
+               case Vstr:
+                       fprintf(f, "%.*s", v->str.len, v->str.txt); break;
+               case Vbool:
+                       fprintf(f, "%s", v->bool ? "True":"False"); break;
+               case Vnum:
+                       {
+                       mpf_t fl;
+                       mpf_init2(fl, 20);
+                       mpf_set_q(fl, v->num);
+                       gmp_fprintf(f, "%.10Fg", fl);
+                       mpf_clear(fl);
+                       break;
+                       }
+               }
+       }
+
+       static void _free_value(struct type *type, struct value *v);
+
+       static int bool_test(struct type *type, struct value *v)
+       {
+               return v->bool;
+       }
+
+       static struct type base_prototype = {
+               .init = _val_init,
+               .print = _print_value,
+               .cmp_order = _value_cmp,
+               .cmp_eq = _value_cmp,
+               .dup = _dup_value,
+               .free = _free_value,
+       };
+
+       static struct type *Tbool, *Tstr, *Tnum, *Tnone, *Tlabel;
+
+###### ast functions
+       static struct type *add_base_type(struct parse_context *c, char *n,
+                                         enum vtype vt, int size)
+       {
+               struct text txt = { n, strlen(n) };
+               struct type *t;
+
+               t = add_type(c, txt, &base_prototype);
+               t->vtype = vt;
+               t->size = size;
+               t->align = size > sizeof(void*) ? sizeof(void*) : size;
+               if (t->size & (t->align - 1))
+                       t->size = (t->size | (t->align - 1)) + 1;       // NOTEST
+               return t;
+       }
+
+###### context initialization
+
+       Tbool  = add_base_type(&context, "Boolean", Vbool, sizeof(char));
+       Tbool->test = bool_test;
+       Tstr   = add_base_type(&context, "string", Vstr, sizeof(struct text));
+       Tnum   = add_base_type(&context, "number", Vnum, sizeof(mpq_t));
+       Tnone  = add_base_type(&context, "none", Vnone, 0);
+       Tlabel = add_base_type(&context, "label", Vlabel, sizeof(void*));
+
+##### Base Values
+
+We have already met values as separate objects.  When manifest constants
+appear in the program text, that must result in an executable which has
+a constant value.  So the `val` structure embeds a value in an
+executable.
+
+###### exec type
+       Xval,
+
+###### ast
+       struct val {
+               struct exec;
+               struct type *vtype;
+               struct value val;
+       };
+
+###### ast functions
+       struct val *new_val(struct type *T, struct token tk)
+       {
+               struct val *v = new_pos(val, tk);
+               v->vtype = T;
+               return v;
+       }
+
+###### declare terminals
+       $TERM True False
+
+###### Grammar
+
+       $*val
+       Value ->  True ${
+               $0 = new_val(Tbool, $1);
+               $0->val.bool = 1;
+       }$
+       | False ${
+               $0 = new_val(Tbool, $1);
+               $0->val.bool = 0;
+       }$
+       | NUMBER ${ {
+               char tail[3];
+               $0 = new_val(Tnum, $1);
+               if (number_parse($0->val.num, tail, $1.txt) == 0)
+                       mpq_init($0->val.num);  // UNTESTED
+                       if (tail[0])
+                               tok_err(c, "error: unsupported number suffix",
+                                       &$1);
+       } }$
+       | STRING ${ {
+               char tail[3];
+               $0 = new_val(Tstr, $1);
+               string_parse(&$1, '\\', &$0->val.str, tail);
+               if (tail[0])
+                       tok_err(c, "error: unsupported string suffix",
+                               &$1);
+       } }$
+       | MULTI_STRING ${ {
+               char tail[3];
+               $0 = new_val(Tstr, $1);
+               string_parse(&$1, '\\', &$0->val.str, tail);
+               if (tail[0])
+                       tok_err(c, "error: unsupported string suffix",
+                               &$1);
+       } }$
+
+###### print exec cases
+       case Xval:
+       {
+               struct val *v = cast(val, e);
+               if (v->vtype == Tstr)
+                       printf("\"");
+               // FIXME how to ensure numbers have same precision.
+               print_value(v->vtype, &v->val, stdout);
+               if (v->vtype == Tstr)
+                       printf("\"");
+               break;
+       }
+
+###### propagate exec cases
+       case Xval:
        {
-               int cmp;
-               if (left.type != right.type)
-                       return left.type - right.type;  // NOTEST
-               switch (left.type->vtype) {
-               case Vlabel: cmp = left.label == right.label ? 0 : 1; break;
-               case Vnum: cmp = mpq_cmp(left.num, right.num); break;
-               case Vstr: cmp = text_cmp(left.str, right.str); break;
-               case Vbool: cmp = left.bool - right.bool; break;
-               case Vnone: cmp = 0;                    // NOTEST
-               }
-               return cmp;
+               struct val *val = cast(val, prog);
+               if (!type_compat(type, val->vtype, rules))
+                       type_err(c, "error: expected %1 found %2",
+                                  prog, type, rules, val->vtype);
+               return val->vtype;
        }
 
-       static void _print_value(struct value v)
+###### interp exec cases
+       case Xval:
+               rvtype = cast(val, e)->vtype;
+               dup_value(rvtype, &cast(val, e)->val, &rv);
+               break;
+
+###### ast functions
+       static void free_val(struct val *v)
        {
-               switch (v.type->vtype) {
-               case Vnone:                             // NOTEST
-                       printf("*no-value*"); break;    // NOTEST
-               case Vlabel:                            // NOTEST
-                       printf("*label-%p*", v.label); break; // NOTEST
-               case Vstr:
-                       printf("%.*s", v.str.len, v.str.txt); break;
-               case Vbool:
-                       printf("%s", v.bool ? "True":"False"); break;
-               case Vnum:
-                       {
-                       mpf_t fl;
-                       mpf_init2(fl, 20);
-                       mpf_set_q(fl, v.num);
-                       gmp_printf("%Fg", fl);
-                       mpf_clear(fl);
-                       break;
-                       }
-               }
+               if (v)
+                       free_value(v->vtype, &v->val);
+               free(v);
        }
 
-       static struct value _parse_value(struct type *type, char *arg)
+###### free exec cases
+       case Xval: free_val(cast(val, e)); break;
+
+###### ast functions
+       // Move all nodes from 'b' to 'rv', reversing their order.
+       // In 'b' 'left' is a list, and 'right' is the last node.
+       // In 'rv', left' is the first node and 'right' is a list.
+       static struct binode *reorder_bilist(struct binode *b)
        {
-               struct value val;
-               struct text tx;
-               int neg = 0;
-               char tail[3] = "";
+               struct binode *rv = NULL;
 
-               val.type = type;
-               switch(type->vtype) {
-               case Vlabel:                            // NOTEST
-               case Vnone:                             // NOTEST
-                       val.type = NULL;                // NOTEST
-                       break;                          // NOTEST
-               case Vstr:
-                       val.str.len = strlen(arg);
-                       val.str.txt = malloc(val.str.len);
-                       memcpy(val.str.txt, arg, val.str.len);
-                       break;
-               case Vnum:
-                       if (*arg == '-') {
-                               neg = 1;
-                               arg++;
-                       }
-                       tx.txt = arg; tx.len = strlen(tx.txt);
-                       if (number_parse(val.num, tail, tx) == 0)
-                               mpq_init(val.num);
-                       else if (neg)
-                               mpq_neg(val.num, val.num);
-                       if (tail[0]) {
-                               printf("Unsupported suffix: %s\n", arg);
-                               val.type = NULL;
-                       }
-                       break;
-               case Vbool:
-                       if (strcasecmp(arg, "true") == 0 ||
-                           strcmp(arg, "1") == 0)
-                               val.bool = 1;
-                       else if (strcasecmp(arg, "false") == 0 ||
-                                strcmp(arg, "0") == 0)
-                               val.bool = 0;
-                       else {
-                               printf("Bad bool: %s\n", arg);
-                               val.type = NULL;
-                       }
-                       break;
+               while (b) {
+                       struct exec *t = b->right;
+                       b->right = rv;
+                       rv = b;
+                       if (b->left)
+                               b = cast(binode, b->left);
+                       else
+                               b = NULL;
+                       rv->left = t;
                }
-               return val;
+               return rv;
        }
 
-       static void _free_value(struct value v);
+#### Labels
 
-       static struct type base_prototype = {
-               .init = _val_init,
-               .prepare = _val_prepare,
-               .parse = _parse_value,
-               .print = _print_value,
-               .cmp_order = _value_cmp,
-               .cmp_eq = _value_cmp,
-               .dup = _dup_value,
-               .free = _free_value,
-       };
+Labels are a temporary concept until I implement enums.  There are an
+anonymous enum which is declared by usage.  Thet are only allowed in
+`use` statements and corresponding `case` entries.  They appear as a
+period followed by an identifier.  All identifiers that are "used" must
+have a "case".
 
-       static struct type *Tbool, *Tstr, *Tnum, *Tnone, *Tlabel;
+For now, we have a global list of labels, and don't check that all "use"
+match "case".
+
+###### exec type
+       Xlabel,
+
+###### ast
+       struct label {
+               struct exec;
+               struct text name;
+               int value;
+       };
+###### free exec cases
+       case Xlabel:
+               free(e);
+               break;
+###### print exec cases
+       case Xlabel: {
+               struct label *l = cast(label, e);
+               printf(".%.*s", l->name.len, l->name.txt);
+               break;
+       }
 
+###### ast
+       struct labels {
+               struct labels *next;
+               struct text name;
+               int value;
+       };
+###### parse context
+       struct labels *labels;
+       int next_label;
 ###### ast functions
-       static struct type *add_base_type(struct parse_context *c, char *n, enum vtype vt)
+       static int label_lookup(struct parse_context *c, struct text name)
        {
-               struct text txt = { n, strlen(n) };
-               struct type *t;
+               struct labels *l, **lp = &c->labels;
+               while (*lp && text_cmp((*lp)->name, name) < 0)
+                       lp = &(*lp)->next;
+               if (*lp && text_cmp((*lp)->name, name) == 0)
+                       return (*lp)->value;
+               l = calloc(1, sizeof(*l));
+               l->next = *lp;
+               l->name = name;
+               if (c->next_label == 0)
+                       c->next_label = 2;
+               l->value = c->next_label;
+               c->next_label += 1;
+               *lp = l;
+               return l->value;
+       }
 
-               t = add_type(c, txt, &base_prototype);
-               t->vtype = vt;
-               return t;
+###### free context storage
+       while (context.labels) {
+               struct labels *l = context.labels;
+               context.labels = l->next;
+               free(l);
        }
 
-###### context initialization
+###### declare terminals
+       $TERM .
+###### term grammar
+       | . IDENTIFIER ${ {
+               struct label *l = new_pos(label, $ID);
+               l->name = $ID.txt;
+               $0 = l;
+       } }$
+###### propagate exec cases
+       case Xlabel: {
+               struct label *l = cast(label, prog);
+               l->value = label_lookup(c, l->name);
+               if (!type_compat(type, Tlabel, rules))
+                       type_err(c, "error: expected %1 found %2",
+                                prog, type, rules, Tlabel);
+               return Tlabel;
+       }
+###### interp exec cases
+       case Xlabel : {
+               struct label *l = cast(label, e);
+               rv.label = l->value;
+               rvtype = Tlabel;
+               break;
+       }
 
-       Tbool  = add_base_type(&context, "Boolean", Vbool);
-       Tstr   = add_base_type(&context, "string", Vstr);
-       Tnum   = add_base_type(&context, "number", Vnum);
-       Tnone  = add_base_type(&context, "none", Vnone);
-       Tlabel = add_base_type(&context, "label", Vlabel);
 
 ### Variables
 
-Variables are scoped named values.  We store the names in a linked
-list of "bindings" sorted lexically, and use sequential search and
+Variables are scoped named values.  We store the names in a linked list
+of "bindings" sorted in lexical order, and use sequential search and
 insertion sort.
 
 ###### ast
@@ -912,13 +1499,49 @@ cannot nest, so a declaration while a name is in-scope is an error.
 ###### ast
        struct variable {
                struct variable *previous;
-               struct value val;
+               struct type *type;
                struct binding *name;
                struct exec *where_decl;// where name was declared
                struct exec *where_set; // where type was set
                ## variable fields
        };
 
+When a scope closes, the values of the variables might need to be freed.
+This happens in the context of some `struct exec` and each `exec` will
+need to know which variables need to be freed when it completes.
+
+####### exec fields
+       struct variable *to_free;
+
+####### variable fields
+       struct exec *cleanup_exec;
+       struct variable *next_free;
+
+####### interp exec cleanup
+       {
+               struct variable *v;
+               for (v = e->to_free; v; v = v->next_free) {
+                       struct value *val = var_value(c, v);
+                       free_value(v->type, val);
+               }
+       }
+
+###### ast functions
+       static void variable_unlink_exec(struct variable *v)
+       {
+               struct variable **vp;
+               if (!v->cleanup_exec)
+                       return;
+               for (vp = &v->cleanup_exec->to_free;
+                   *vp; vp = &(*vp)->next_free) {
+                       if (*vp != v)
+                               continue;
+                       *vp = v->next_free;
+                       v->cleanup_exec = NULL;
+                       break;
+               }
+       }
+
 While the naming seems strange, we include local constants in the
 definition of variables.  A name declared `var := value` can
 subsequently be changed, but a name declared `var ::= value` cannot -
@@ -964,12 +1587,18 @@ for scoping.  When a new scope is opened, a new frame is pushed and
 the child-count of the parent frame is incremented.  This child-count
 is used to distinguish between the first of a set of parallel scopes,
 in which declared variables must not be in scope, and subsequent
-branches, whether they must already be conditionally scoped.
+branches, whether they may already be conditionally scoped.
+
+We need a total ordering of scopes so we can easily compare to variables
+to see if they are concurrently in scope.  To achieve this we record a
+`scope_count` which is actually a count of both beginnings and endings
+of scopes.  Then each variable has a record of the scope count where it
+enters scope, and where it leaves.
 
 To push a new frame *before* any code in the frame is parsed, we need a
 grammar reduction.  This is most easily achieved with a grammar
 element which derives the empty string, and creates the new scope when
-it is recognized.  This can be placed, for example, between a keyword
+it is recognised.  This can be placed, for example, between a keyword
 like "if" and the code following it.
 
 ###### ast
@@ -980,8 +1609,12 @@ like "if" and the code following it.
 
 ###### parse context
        int scope_depth;
+       int scope_count;
        struct scope *scope_stack;
 
+###### variable fields
+       int scope_start, scope_end;
+
 ###### ast functions
        static void scope_pop(struct parse_context *c)
        {
@@ -990,6 +1623,7 @@ like "if" and the code following it.
                c->scope_stack = s->parent;
                free(s);
                c->scope_depth -= 1;
+               c->scope_count += 1;
        }
 
        static void scope_push(struct parse_context *c)
@@ -1000,6 +1634,7 @@ like "if" and the code following it.
                s->parent = c->scope_stack;
                c->scope_stack = s;
                c->scope_depth += 1;
+               c->scope_count += 1;
        }
 
 ###### Grammar
@@ -1026,17 +1661,20 @@ Each variable records a scope depth and is in one of four states:
   enclosed the declaration, and that has closed.
 
 - "conditionally in scope".  The "in scope" block and all parallel
-  scopes have closed, and no further mention of the name has been
-  seen.  This state includes a secondary nest depth which records the
-  outermost scope seen since the variable became conditionally in
-  scope.  If a use of the name is found, the variable becomes "in
-  scope" and that secondary depth becomes the recorded scope depth.
-  If the name is declared as a new variable, the old variable becomes
-  "out of scope" and the recorded scope depth stays unchanged.
+  scopes have closed, and no further mention of the name has been seen.
+  This state includes a secondary nest depth (`min_depth`) which records
+  the outermost scope seen since the variable became conditionally in
+  scope.  If a use of the name is found, the variable becomes "in scope"
+  and that secondary depth becomes the recorded scope depth.  If the
+  name is declared as a new variable, the old variable becomes "out of
+  scope" and the recorded scope depth stays unchanged.
 
 - "out of scope".  The variable is neither in scope nor conditionally
   in scope.  It is permanently out of scope now and can be removed from
-  the "in scope" stack.
+  the "in scope" stack.  When a variable becomes out-of-scope it is
+  moved to a separate list (`out_scope`) of variables which have fully
+  known scope.  This will be used at the end of each function to assign
+  each variable a place in the stack frame.
 
 ###### variable fields
        int depth, min_depth;
@@ -1046,14 +1684,14 @@ Each variable records a scope depth and is in one of four states:
 ###### parse context
 
        struct variable *in_scope;
+       struct variable *out_scope;
 
 All variables with the same name are linked together using the
-'previous' link.  Those variable that have
-been affirmatively merged all have a 'merged' pointer that points to
-one primary variable - the most recently declared instance. When
-merging variables, we need to also adjust the 'merged' pointer on any
-other variables that had previously been merged with the one that will
-no longer be primary.
+'previous' link.  Those variable that have been affirmatively merged all
+have a 'merged' pointer that points to one primary variable - the most
+recently declared instance.  When merging variables, we need to also
+adjust the 'merged' pointer on any other variables that had previously
+been merged with the one that will no longer be primary.
 
 A variable that is no longer the most recent instance of a name may
 still have "pending" scope, if it might still be merged with most
@@ -1062,6 +1700,11 @@ recent instance.  These variables don't really belong in the
 is found.  Instead, they are detected and ignored when considering the
 list of in_scope names.
 
+The storage of the value of a variable will be described later.  For now
+we just need to know that when a variable goes out of scope, it might
+need to be freed.  For this we need to be able to find it, so assume that
+`var_value()` will provide that.
+
 ###### variable fields
        struct variable *merged;
 
@@ -1071,20 +1714,26 @@ list of in_scope names.
        {
                struct variable *v;
 
-               if (primary->merged)
-                       // shouldn't happen
-                       primary = primary->merged;
+               primary = primary->merged;
 
                for (v = primary->previous; v; v=v->previous)
                        if (v == secondary || v == secondary->merged ||
                            v->merged == secondary ||
-                           (v->merged && v->merged == secondary->merged)) {
+                           v->merged == secondary->merged) {
                                v->scope = OutScope;
                                v->merged = primary;
+                               if (v->scope_start < primary->scope_start)
+                                       primary->scope_start = v->scope_start;
+                               if (v->scope_end > primary->scope_end)
+                                       primary->scope_end = v->scope_end;      // NOTEST
+                               variable_unlink_exec(v);
                        }
        }
 
-###### free context vars
+###### forward decls
+       static struct value *var_value(struct parse_context *c, struct variable *v);
+
+###### free global vars
 
        while (context.varlist) {
                struct binding *b = context.varlist;
@@ -1092,26 +1741,30 @@ list of in_scope names.
                context.varlist = b->next;
                free(b);
                while (v) {
-                       struct variable *t = v;
-
-                       v = t->previous;
-                       free_value(t->val);
-                       if (t->depth == 0)
-                               // This is a global constant
-                               free_exec(t->where_decl);
-                       free(t);
+                       struct variable *next = v->previous;
+
+                       if (v->global && v->frame_pos >= 0) {
+                               free_value(v->type, var_value(&context, v));
+                               if (v->depth == 0 && v->type->free == function_free)
+                                       // This is a function constant
+                                       free_exec(v->where_decl);
+                       }
+                       free(v);
+                       v = next;
                }
        }
 
 #### Manipulating Bindings
 
-When a name is conditionally visible, a new declaration discards the
-old binding - the condition lapses.  Conversely a usage of the name
-affirms the visibility and extends it to the end of the containing
-block - i.e. the block that contains both the original declaration and
-the latest usage.  This is determined from `min_depth`.  When a
-conditionally visible variable gets affirmed like this, it is also
-merged with other conditionally visible variables with the same name.
+When a name is conditionally visible, a new declaration discards the old
+binding - the condition lapses.  Similarly when we reach the end of a
+function (outermost non-global scope) any conditional scope must lapse.
+Conversely a usage of the name affirms the visibility and extends it to
+the end of the containing block - i.e.  the block that contains both the
+original declaration and the latest usage.  This is determined from
+`min_depth`.  When a conditionally visible variable gets affirmed like
+this, it is also merged with other conditionally visible variables with
+the same name.
 
 When we parse a variable declaration we either report an error if the
 name is currently bound, or create a new variable at the current nest
@@ -1119,8 +1772,8 @@ depth if the name is unbound or bound to a conditionally scoped or
 pending-scope variable.  If the previous variable was conditionally
 scoped, it and its homonyms becomes out-of-scope.
 
-When we parse a variable reference (including non-declarative
-assignment) we report an error if the name is not bound or is bound to
+When we parse a variable reference (including non-declarative assignment
+"foo = bar") we report an error if the name is not bound or is bound to
 a pending-scope variable; update the scope if the name is bound to a
 conditionally scoped variable; or just proceed normally if the named
 variable is in scope.
@@ -1133,7 +1786,7 @@ switch.  Other scopes are "sequential".
 
 When exiting a parallel scope we check if there are any variables that
 were previously pending and are still visible. If there are, then
-there weren't redeclared in the most recent scope, so they cannot be
+they weren't redeclared in the most recent scope, so they cannot be
 merged and must become out-of-scope.  If it is not the first of
 parallel scopes (based on `child_count`), we check that there was a
 previous binding that is still pending-scope.  If there isn't, the new
@@ -1146,7 +1799,7 @@ we need to mark all pending-scope variable as out-of-scope.  Otherwise
 all pending-scope variables become conditionally scoped.
 
 ###### ast
-       enum closetype { CloseSequential, CloseParallel, CloseElse };
+       enum closetype { CloseSequential, CloseFunction, CloseParallel, CloseElse };
 
 ###### ast functions
 
@@ -1171,11 +1824,13 @@ all pending-scope variables become conditionally scoped.
                v->previous = b->var;
                b->var = v;
                v->name = b;
+               v->merged = v;
                v->min_depth = v->depth = c->scope_depth;
                v->scope = InScope;
                v->in_scope = c->in_scope;
+               v->scope_start = c->scope_count;
                c->in_scope = v;
-               v->val = val_prepare(NULL);
+               ## variable init
                return v;
        }
 
@@ -1207,29 +1862,68 @@ all pending-scope variables become conditionally scoped.
                return v;
        }
 
-       static void var_block_close(struct parse_context *c, enum closetype ct)
+       static int var_refile(struct parse_context *c, struct variable *v)
+       {
+               /* Variable just went out of scope.  Add it to the out_scope
+                * list, sorted by ->scope_start
+                */
+               struct variable **vp = &c->out_scope;
+               while ((*vp) && (*vp)->scope_start < v->scope_start)
+                       vp = &(*vp)->in_scope;
+               v->in_scope = *vp;
+               *vp = v;
+               return 0;               
+       }
+
+       static void var_block_close(struct parse_context *c, enum closetype ct,
+                                   struct exec *e)
        {
-               /* Close off all variables that are in_scope */
+               /* Close off all variables that are in_scope.
+                * Some variables in c->scope may already be not-in-scope,
+                * such as when a PendingScope variable is hidden by a new
+                * variable with the same name.
+                * So we check for v->name->var != v and drop them.
+                * If we choose to make a variable OutScope, we drop it
+                * immediately too.
+                */
                struct variable *v, **vp, *v2;
 
                scope_pop(c);
                for (vp = &c->in_scope;
-                    v = *vp, v && v->depth > c->scope_depth && v->min_depth > c->scope_depth;
-                    ) {
-                       if (v->name->var == v) switch (ct) {
+                    (v = *vp) && v->min_depth > c->scope_depth;
+                    (v->scope == OutScope || v->name->var != v)
+                    ? (*vp =  v->in_scope, var_refile(c, v))
+                    : ( vp = &v->in_scope, 0)) {
+                       v->min_depth = c->scope_depth;
+                       if (v->name->var != v)
+                               /* This is still in scope, but we haven't just
+                                * closed the scope.
+                                */
+                               continue;
+                       v->min_depth = c->scope_depth;
+                       if (v->scope == InScope)
+                               v->scope_end = c->scope_count;
+                       if (v->scope == InScope && e && !v->global) {
+                               /* This variable gets cleaned up when 'e' finishes */
+                               variable_unlink_exec(v);
+                               v->cleanup_exec = e;
+                               v->next_free = e->to_free;
+                               e->to_free = v;
+                       }
+                       switch (ct) {
                        case CloseElse:
                        case CloseParallel: /* handle PendingScope */
                                switch(v->scope) {
                                case InScope:
                                case CondScope:
                                        if (c->scope_stack->child_count == 1)
+                                               /* first among parallel branches */
                                                v->scope = PendingScope;
                                        else if (v->previous &&
                                                 v->previous->scope == PendingScope)
+                                               /* all previous branches used name */
                                                v->scope = PendingScope;
-                                       else if (v->val.type == Tlabel)
-                                               v->scope = PendingScope;
-                                       else if (v->name->var == v)
+                                       else
                                                v->scope = OutScope;
                                        if (ct == CloseElse) {
                                                /* All Pending variables with this name
@@ -1241,18 +1935,24 @@ all pending-scope variables become conditionally scoped.
                                        }
                                        break;
                                case PendingScope:
-                                       for (v2 = v;
-                                            v2 && v2->scope == PendingScope;
-                                            v2 = v2->previous)
-                                               if (v2->val.type != Tlabel)
-                                                       v2->scope = OutScope;
-                                       break;
-                               case OutScope: break;
+                                       /* Not possible as it would require
+                                        * parallel scope to be nested immediately
+                                        * in a parallel scope, and that never
+                                        * happens.
+                                        */                     // NOTEST
+                               case OutScope:
+                                       /* Not possible as we already tested for
+                                        * OutScope
+                                        */
+                                       abort();                // NOTEST
                                }
                                break;
+                       case CloseFunction:
+                               if (v->scope == CondScope)
+                                       /* Condition cannot continue past end of function */
+                                       v->scope = InScope;
+                               /* fallthrough */
                        case CloseSequential:
-                               if (v->val.type == Tlabel)
-                                       v->scope = PendingScope;
                                switch (v->scope) {
                                case InScope:
                                        v->scope = OutScope;
@@ -1266,376 +1966,497 @@ all pending-scope variables become conditionally scoped.
                                        for (v2 = v;
                                             v2 && v2->scope == PendingScope;
                                             v2 = v2->previous)
-                                               if (v2->val.type == Tlabel) {
-                                                       v2->scope = CondScope;
-                                                       v2->min_depth = c->scope_depth;
-                                               } else
-                                                       v2->scope = OutScope;
+                                               v2->scope = OutScope;
                                        break;
                                case CondScope:
                                case OutScope: break;
                                }
                                break;
                        }
-                       if (v->scope == OutScope || v->name->var != v)
-                               *vp = v->in_scope;
-                       else
-                               vp = &v->in_scope;
                }
        }
 
-### Executables
-
-Executables can be lots of different things.  In many cases an
-executable is just an operation combined with one or two other
-executables.  This allows for expressions and lists etc.  Other times
-an executable is something quite specific like a constant or variable
-name.  So we define a `struct exec` to be a general executable with a
-type, and a `struct binode` which is a subclass of `exec`, forms a
-node in a binary tree, and holds an operation. There will be other
-subclasses, and to access these we need to be able to `cast` the
-`exec` into the various other types.
-
-###### macros
-       #define cast(structname, pointer) ({            \
-               const typeof( ((struct structname *)0)->type) *__mptr = &(pointer)->type; \
-               if (__mptr && *__mptr != X##structname) abort();                \
-               (struct structname *)( (char *)__mptr);})
+#### Storing Values
 
-       #define new(structname) ({                                              \
-               struct structname *__ptr = ((struct structname *)calloc(1,sizeof(struct structname))); \
-               __ptr->type = X##structname;                                            \
-               __ptr->line = -1; __ptr->column = -1;                                   \
-               __ptr;})
+The value of a variable is store separately from the variable, on an
+analogue of a stack frame.  There are (currently) two frames that can be
+active.  A global frame which currently only stores constants, and a
+stacked frame which stores local variables.  Each variable knows if it
+is global or not, and what its index into the frame is.
 
-       #define new_pos(structname, token) ({                                           \
-               struct structname *__ptr = ((struct structname *)calloc(1,sizeof(struct structname))); \
-               __ptr->type = X##structname;                                            \
-               __ptr->line = token.line; __ptr->column = token.col;                    \
-               __ptr;})
+Values in the global frame are known immediately they are relevant, so
+the frame needs to be reallocated as it grows so it can store those
+values.  The local frame doesn't get values until the interpreted phase
+is started, so there is no need to allocate until the size is known.
 
-###### ast
-       enum exec_types {
-               Xbinode,
-               ## exec type
-       };
-       struct exec {
-               enum exec_types type;
-               int line, column;
-       };
-       struct binode {
-               struct exec;
-               enum Btype {
-                       ## Binode types
-               } op;
-               struct exec *left, *right;
-       };
+We initialize the `frame_pos` to an impossible value, so that we can
+tell if it was set or not later.
 
-###### ast functions
+###### variable fields
+       short frame_pos;
+       short global;
 
-       static int __fput_loc(struct exec *loc, FILE *f)
-       {
-               if (!loc)
-                       return 0;               // NOTEST
-               if (loc->line >= 0) {
-                       fprintf(f, "%d:%d: ", loc->line, loc->column);
-                       return 1;
-               }
-               if (loc->type == Xbinode)
-                       return __fput_loc(cast(binode,loc)->left, f) ||
-                              __fput_loc(cast(binode,loc)->right, f);
-               return 0;
-       }
-       static void fput_loc(struct exec *loc, FILE *f)
-       {
-               if (!__fput_loc(loc, f))
-                       fprintf(f, "??:??: ");  // NOTEST
-       }
+###### variable init
+       v->frame_pos = -1;
 
-Each different type of `exec` node needs a number of functions
-defined, a bit like methods.  We must be able to be able to free it,
-print it, analyse it and execute it.  Once we have specific `exec`
-types we will need to parse them too.  Let's take this a bit more
-slowly.
+###### parse context
 
-#### Freeing
+       short global_size, global_alloc;
+       short local_size;
+       void *global, *local;
 
-The parser generator requires a `free_foo` function for each struct
-that stores attributes and they will often be `exec`s and subtypes
-there-of.  So we need `free_exec` which can handle all the subtypes,
-and we need `free_binode`.
+###### forward decls
+       static struct value *global_alloc(struct parse_context *c, struct type *t,
+                                         struct variable *v, struct value *init);
 
 ###### ast functions
 
-       static void free_binode(struct binode *b)
-       {
-               if (!b)
-                       return;
-               free_exec(b->left);
-               free_exec(b->right);
-               free(b);
-       }
-
-###### core functions
-       static void free_exec(struct exec *e)
+       static struct value *var_value(struct parse_context *c, struct variable *v)
        {
-               if (!e)
-                       return;
-               switch(e->type) {
-                       ## free exec cases
+               if (!v->global) {
+                       if (!c->local || !v->type)
+                               return NULL;    // UNTESTED
+                       if (v->frame_pos + v->type->size > c->local_size) {
+                               printf("INVALID frame_pos\n");  // NOTEST
+                               exit(2);                        // NOTEST
+                       }
+                       return c->local + v->frame_pos;
+               }
+               if (c->global_size > c->global_alloc) {
+                       int old = c->global_alloc;
+                       c->global_alloc = (c->global_size | 1023) + 1024;
+                       c->global = realloc(c->global, c->global_alloc);
+                       memset(c->global + old, 0, c->global_alloc - old);
                }
+               return c->global + v->frame_pos;
        }
 
-###### forward decls
-
-       static void free_exec(struct exec *e);
-
-###### free exec cases
-       case Xbinode: free_binode(cast(binode, e)); break;
+       static struct value *global_alloc(struct parse_context *c, struct type *t,
+                                         struct variable *v, struct value *init)
+       {
+               struct value *ret;
+               struct variable scratch;
 
-#### Printing
+               if (t->prepare_type)
+                       t->prepare_type(c, t, 1);       // NOTEST
 
-Printing an `exec` requires that we know the current indent level for
-printing line-oriented components.  As will become clear later, we
-also want to know what sort of bracketing to use.
+               if (c->global_size & (t->align - 1))
+                       c->global_size = (c->global_size + t->align) & ~(t->align-1);   // NOTEST
+               if (!v) {
+                       v = &scratch;
+                       v->type = t;
+               }
+               v->frame_pos = c->global_size;
+               v->global = 1;
+               c->global_size += v->type->size;
+               ret = var_value(c, v);
+               if (init)
+                       memcpy(ret, init, t->size);
+               else
+                       val_init(t, ret);       // NOTEST
+               return ret;
+       }
 
-###### ast functions
+As global values are found -- struct field initializers, labels etc --
+`global_alloc()` is called to record the value in the global frame.
 
-       static void do_indent(int i, char *str)
-       {
-               while (i--)
-                       printf("    ");
-               printf("%s", str);
-       }
+When the program is fully parsed, each function is analysed, we need to
+walk the list of variables local to that function and assign them an
+offset in the stack frame.  For this we have `scope_finalize()`.
 
-###### core functions
-       static void print_binode(struct binode *b, int indent, int bracket)
-       {
-               struct binode *b2;
-               switch(b->op) {
-               ## print binode cases
-               }
-       }
+We keep the stack from dense by re-using space for between variables
+that are not in scope at the same time.  The `out_scope` list is sorted
+by `scope_start` and as we process a varible, we move it to an FIFO
+stack.  For each variable we consider, we first discard any from the
+stack anything that went out of scope before the new variable came in.
+Then we place the new variable just after the one at the top of the
+stack.
 
-       static void print_exec(struct exec *e, int indent, int bracket)
+###### ast functions
+
+       static void scope_finalize(struct parse_context *c, struct type *ft)
        {
-               if (!e)
-                       return;         // NOTEST
-               switch (e->type) {
-               case Xbinode:
-                       print_binode(cast(binode, e), indent, bracket); break;
-               ## print exec cases
+               int size = ft->function.local_size;
+               struct variable *next = ft->function.scope;
+               struct variable *done = NULL;
+
+               while (next) {
+                       struct variable *v = next;
+                       struct type *t = v->type;
+                       int pos;
+                       next = v->in_scope;
+                       if (v->merged != v)
+                               continue;
+                       if (!t)
+                               continue;
+                       if (v->frame_pos >= 0)
+                               continue;
+                       while (done && done->scope_end < v->scope_start)
+                               done = done->in_scope;
+                       if (done)
+                               pos = done->frame_pos + done->type->size;
+                       else
+                               pos = ft->function.local_size;
+                       if (pos & (t->align - 1))
+                               pos = (pos + t->align) & ~(t->align-1);
+                       v->frame_pos = pos;
+                       if (size < pos + v->type->size)
+                               size = pos + v->type->size;
+                       v->in_scope = done;
+                       done = v;
                }
+               c->out_scope = NULL;
+               ft->function.local_size = size;
        }
 
-###### forward decls
+###### free context storage
+       free(context.global);
 
-       static void print_exec(struct exec *e, int indent, int bracket);
+#### Variables as executables
 
-#### Analysing
+Just as we used a `val` to wrap a value into an `exec`, we similarly
+need a `var` to wrap a `variable` into an exec.  While each `val`
+contained a copy of the value, each `var` holds a link to the variable
+because it really is the same variable no matter where it appears.
+When a variable is used, we need to remember to follow the `->merged`
+link to find the primary instance.
 
-As discussed, analysis involves propagating type requirements around
-the program and looking for errors.
+When a variable is declared, it may or may not be given an explicit
+type.  We need to record which so that we can report the parsed code
+correctly.
 
-So `propagate_types` is passed an expected type (being a `struct type`
-pointer together with some `val_rules` flags) that the `exec` is
-expected to return, and returns the type that it does return, either
-of which can be `NULL` signifying "unknown".  An `ok` flag is passed
-by reference. It is set to `0` when an error is found, and `2` when
-any change is made.  If it remains unchanged at `1`, then no more
-propagation is needed.
+###### exec type
+       Xvar,
 
 ###### ast
+       struct var {
+               struct exec;
+               struct variable *var;
+       };
 
-       enum val_rules {Rnolabel = 1<<0, Rboolok = 1<<1, Rnoconstant = 2<<1};
-
-###### format cases
-       case 'r':
-               if (rules & Rnolabel)
-                       fputs(" (labels not permitted)", stderr);
-               break;
+###### variable fields
+       int explicit_type;
 
-###### core functions
+###### Grammar
 
-       static struct type *propagate_types(struct exec *prog, struct parse_context *c, int *ok,
-                                           struct type *type, int rules);
-       static struct type *__propagate_types(struct exec *prog, struct parse_context *c, int *ok,
-                                             struct type *type, int rules)
-       {
-               struct type *t;
+       $TERM : ::
 
-               if (!prog)
-                       return Tnone;
+       $*var
+       VariableDecl -> IDENTIFIER : ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v)
+                       v->where_decl = $0;
+               else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
+       | IDENTIFIER :: ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v) {
+                       v->where_decl = $0;
+                       v->constant = 1;
+               } else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
+       | IDENTIFIER : Type ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v) {
+                       v->where_decl = $0;
+                       v->where_set = $0;
+                       v->type = $<Type;
+                       v->explicit_type = 1;
+               } else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
+       | IDENTIFIER :: Type ${ {
+               struct variable *v = var_decl(c, $1.txt);
+               $0 = new_pos(var, $1);
+               $0->var = v;
+               if (v) {
+                       v->where_decl = $0;
+                       v->where_set = $0;
+                       v->type = $<Type;
+                       v->constant = 1;
+                       v->explicit_type = 1;
+               } else {
+                       v = var_ref(c, $1.txt);
+                       $0->var = v;
+                       type_err(c, "error: variable '%v' redeclared",
+                                $0, NULL, 0, NULL);
+                       type_err(c, "info: this is where '%v' was first declared",
+                                v->where_decl, NULL, 0, NULL);
+               }
+       } }$
 
-               switch (prog->type) {
-               case Xbinode:
-               {
-                       struct binode *b = cast(binode, prog);
-                       switch (b->op) {
-                       ## propagate binode cases
+       $*exec
+       Variable -> IDENTIFIER ${ {
+               struct variable *v = var_ref(c, $1.txt);
+               $0 = new_pos(var, $1);
+               if (v == NULL) {
+                       /* This might be a global const or a label
+                        * Allocate a var with impossible type Tnone,
+                        * which will be adjusted when we find out what it is,
+                        * or will trigger an error.
+                        */
+                       v = var_decl(c, $1.txt);
+                       if (v) {
+                               v->type = Tnone;
+                               v->where_decl = $0;
+                               v->where_set = $0;
                        }
-                       break;
                }
-               ## propagate exec cases
-               }
-               return Tnone;
-       }
+               cast(var, $0)->var = v;
+       } }$
 
-       static struct type *propagate_types(struct exec *prog, struct parse_context *c, int *ok,
-                                           struct type *type, int rules)
+###### print exec cases
+       case Xvar:
        {
-               struct type *ret = __propagate_types(prog, c, ok, type, rules);
-
-               if (c->parse_error)
-                       *ok = 0;
-               return ret;
+               struct var *v = cast(var, e);
+               if (v->var) {
+                       struct binding *b = v->var->name;
+                       printf("%.*s", b->name.len, b->name.txt);
+               }
+               break;
        }
 
-#### Interpreting
-
-Interpreting an `exec` doesn't require anything but the `exec`.  State
-is stored in variables and each variable will be directly linked from
-within the `exec` tree.  The exception to this is the whole `program`
-which needs to look at command line arguments.  The `program` will be
-interpreted separately.
-
-Each `exec` can return a value, which may be `Tnone` but must be
-non-NULL;  Some `exec`s will return the location of a value, which can
-be updates.  To support this, each exec case must store either a value
-in `val` or the pointer to a value in `lval`.  If `lval` is set, but a
-simple value is required, `inter_exec()` will dereference `lval` to
-get the value.
-
-###### core functions
-
-       struct lrval {
-               struct value val, *lval;
-       };
+###### format cases
+       case 'v':
+               if (loc && loc->type == Xvar) {
+                       struct var *v = cast(var, loc);
+                       if (v->var) {
+                               struct binding *b = v->var->name;
+                               fprintf(stderr, "%.*s", b->name.len, b->name.txt);
+                       } else
+                               fputs("???", stderr);   // NOTEST
+               } else
+                       fputs("NOTVAR", stderr);        // NOTEST
+               break;
 
-       static struct lrval _interp_exec(struct exec *e);
+###### propagate exec cases
 
-       static struct value interp_exec(struct exec *e)
+       case Xvar:
        {
-               struct lrval ret = _interp_exec(e);
-
-               if (ret.lval)
-                       return dup_value(*ret.lval);
-               else
-                       return ret.val;
+               struct var *var = cast(var, prog);
+               struct variable *v = var->var;
+               if (!v) {
+                       type_err(c, "%d:BUG: no variable!!", prog, NULL, 0, NULL); // NOTEST
+                       return Tnone;                                   // NOTEST
+               }
+               v = v->merged;
+               if (v->constant && (rules & Rnoconstant)) {
+                       type_err(c, "error: Cannot assign to a constant: %v",
+                                prog, NULL, 0, NULL);
+                       type_err(c, "info: name was defined as a constant here",
+                                v->where_decl, NULL, 0, NULL);
+                       return v->type;
+               }
+               if (v->type == Tnone && v->where_decl == prog)
+                       type_err(c, "error: variable used but not declared: %v",
+                                prog, NULL, 0, NULL);
+               if (v->type == NULL) {
+                       if (type && !(*perr & Efail)) {
+                               v->type = type;
+                               v->where_set = prog;
+                               *perr |= Eretry;
+                       }
+               } else if (!type_compat(type, v->type, rules)) {
+                       type_err(c, "error: expected %1 but variable '%v' is %2", prog,
+                                type, rules, v->type);
+                       type_err(c, "info: this is where '%v' was set to %1", v->where_set,
+                                v->type, rules, NULL);
+               }
+               if (!v->global || v->frame_pos < 0)
+                       *perr |= Eruntime;
+               if (!type)
+                       return v->type;
+               return type;
        }
 
-       static struct value *linterp_exec(struct exec *e)
+###### interp exec cases
+       case Xvar:
        {
-               struct lrval ret = _interp_exec(e);
+               struct var *var = cast(var, e);
+               struct variable *v = var->var;
 
-               return ret.lval;
+               v = v->merged;
+               lrv = var_value(c, v);
+               rvtype = v->type;
+               break;
        }
 
-       static struct lrval _interp_exec(struct exec *e)
-       {
-               struct lrval ret;
-               struct value rv, *lrv = NULL;
-               rv.type = Tnone;
-               if (!e) {
-                       ret.lval = lrv;
-                       ret.val = rv;
-                       return ret;
-               }
+###### ast functions
 
-               switch(e->type) {
-               case Xbinode:
-               {
-                       struct binode *b = cast(binode, e);
-                       struct value left, right, *lleft;
-                       left.type = right.type = Tnone;
-                       switch (b->op) {
-                       ## interp binode cases
-                       }
-                       free_value(left); free_value(right);
-                       break;
-               }
-               ## interp exec cases
-               }
-               ret.lval = lrv;
-               ret.val = rv;
-               return ret;
+       static void free_var(struct var *v)
+       {
+               free(v);
        }
 
+###### free exec cases
+       case Xvar: free_var(cast(var, e)); break;
+
+
 ### Complex types
 
 Now that we have the shape of the interpreter in place we can add some
 complex types and connected them in to the data structures and the
 different phases of parse, analyse, print, interpret.
 
-Thus far we have arrays and structs.
+Being "complex" the language will naturally have syntax to access
+specifics of objects of these types.  These will fit into the grammar as
+"Terms" which are the things that are combined with various operators to
+form "Expression".  Where a Term is formed by some operation on another
+Term, the subordinate Term will always come first, so for example a
+member of an array will be expressed as the Term for the array followed
+by an index in square brackets.  The strict rule of using postfix
+operations makes precedence irrelevant within terms.  To provide a place
+to put the grammar for each terms of each type, we will start out by
+introducing the "Term" grammar production, with contains at least a
+simple "Value" (to be explained later).
+
+###### Grammar
+       $*exec
+       Term ->  Value ${ $0 = $<1; }$
+       | Variable ${ $0 = $<1; }$
+       ## term grammar
+
+Thus far the complex types we have are arrays and structs.
 
 #### Arrays
 
 Arrays can be declared by giving a size and a type, as `[size]type' so
 `freq:[26]number` declares `freq` to be an array of 26 numbers.  The
-size can be an arbitrary expression which is evaluated when the name
-comes into scope.
+size can be either a literal number, or a named constant.  Some day an
+arbitrary expression will be supported.
+
+As a formal parameter to a function, the array can be declared with a
+new variable as the size: `name:[size::number]string`.  The `size`
+variable is set to the size of the array and must be a constant.  As
+`number` is the only supported type, it can be left out:
+`name:[size::]string`.
 
 Arrays cannot be assigned.  When pointers are introduced we will also
 introduce array slices which can refer to part or all of an array -
 the assignment syntax will create a slice.  For now, an array can only
 ever be referenced by the name it is declared with.  It is likely that
 a "`copy`" primitive will eventually be define which can be used to
-make a copy of an array with controllable depth.
+make a copy of an array with controllable recursive depth.
+
+For now we have two sorts of array, those with fixed size either because
+it is given as a literal number or because it is a struct member (which
+cannot have a runtime-changing size), and those with a size that is
+determined at runtime - local variables with a const size.  The former
+have their size calculated at parse time, the latter at run time.
+
+For the latter type, the `size` field of the type is the size of a
+pointer, and the array is reallocated every time it comes into scope.
+
+We differentiate struct fields with a const size from local variables
+with a const size by whether they are prepared at parse time or not.
 
 ###### type union fields
 
        struct {
-               int size;
+               int unspec;     // size is unspecified - vsize must be set.
+               short size;
+               short static_size;
                struct variable *vsize;
                struct type *member;
        } array;
 
 ###### value union fields
-       struct {
-               struct value *elmnts;
-       } array;
+       void *array;  // used if not static_size
 
 ###### value functions
 
-       static struct value array_prepare(struct type *type)
-       {
-               struct value ret;
-
-               ret.type = type;
-               ret.array.elmnts = NULL;
-               return ret;
-       }
-
-       static struct value array_init(struct type *type)
+       static int array_prepare_type(struct parse_context *c, struct type *type,
+                                      int parse_time)
        {
-               struct value ret;
-               int i;
+               struct value *vsize;
+               mpz_t q;
+               if (type->array.static_size)
+                       return 1;       // UNTESTED
+               if (type->array.unspec && parse_time)
+                       return 1;       // UNTESTED
+               if (parse_time && type->array.vsize && !type->array.vsize->global)
+                       return 1;       // UNTESTED
 
-               ret.type = type;
                if (type->array.vsize) {
-                       mpz_t q;
+                       vsize = var_value(c, type->array.vsize);
+                       if (!vsize)
+                               return 1;       // UNTESTED
                        mpz_init(q);
-                       mpz_tdiv_q(q, mpq_numref(type->array.vsize->val.num),
-                                  mpq_denref(type->array.vsize->val.num));
+                       mpz_tdiv_q(q, mpq_numref(vsize->num), mpq_denref(vsize->num));
                        type->array.size = mpz_get_si(q);
                        mpz_clear(q);
                }
-               ret.array.elmnts = calloc(type->array.size,
-                                         sizeof(ret.array.elmnts[0]));
-               for (i = 0; ret.array.elmnts && i < type->array.size; i++)
-                       ret.array.elmnts[i] = val_init(type->array.member);
-               return ret;
+               if (!parse_time)
+                       return 1;
+               if (type->array.member->size <= 0)
+                       return 0;       // UNTESTED
+
+               type->array.static_size = 1;
+               type->size = type->array.size * type->array.member->size;
+               type->align = type->array.member->align;
+
+               return 1;
        }
 
-       static void array_free(struct value val)
+       static void array_init(struct type *type, struct value *val)
        {
                int i;
+               void *ptr = val->ptr;
+
+               if (!val)
+                       return;                         // NOTEST
+               if (!type->array.static_size) {
+                       val->array = calloc(type->array.size,
+                                           type->array.member->size);
+                       ptr = val->array;
+               }
+               for (i = 0; i < type->array.size; i++) {
+                       struct value *v;
+                       v = (void*)ptr + i * type->array.member->size;
+                       val_init(type->array.member, v);
+               }
+       }
 
-               if (val.array.elmnts)
-                       for (i = 0; i < val.type->array.size; i++)
-                               free_value(val.array.elmnts[i]);
-               free(val.array.elmnts);
+       static void array_free(struct type *type, struct value *val)
+       {
+               int i;
+               void *ptr = val->ptr;
+
+               if (!type->array.static_size)
+                       ptr = val->array;
+               for (i = 0; i < type->array.size; i++) {
+                       struct value *v;
+                       v = (void*)ptr + i * type->array.member->size;
+                       free_value(type->array.member, v);
+               }
+               if (!type->array.static_size)
+                       free(ptr);
        }
 
        static int array_compat(struct type *require, struct type *have)
@@ -1645,10 +2466,19 @@ make a copy of an array with controllable depth.
                /* Both are arrays, so we can look at details */
                if (!type_compat(require->array.member, have->array.member, 0))
                        return 0;
+               if (have->array.unspec && require->array.unspec) {
+                       if (have->array.vsize && require->array.vsize &&
+                           have->array.vsize != require->array.vsize)  // UNTESTED
+                               /* sizes might not be the same */
+                               return 0;       // UNTESTED
+                       return 1;
+               }
+               if (have->array.unspec || require->array.unspec)
+                       return 1;       // UNTESTED
                if (require->array.vsize == NULL && have->array.vsize == NULL)
                        return require->array.size == have->array.size;
 
-               return require->array.vsize == have->array.vsize;
+               return require->array.vsize == have->array.vsize;       // UNTESTED
        }
 
        static void array_print_type(struct type *type, FILE *f)
@@ -1656,36 +2486,43 @@ make a copy of an array with controllable depth.
                fputs("[", f);
                if (type->array.vsize) {
                        struct binding *b = type->array.vsize->name;
-                       fprintf(f, "%.*s]", b->name.len, b->name.txt);
-               } else
+                       fprintf(f, "%.*s%s]", b->name.len, b->name.txt,
+                               type->array.unspec ? "::" : "");
+               } else if (type->array.size)
                        fprintf(f, "%d]", type->array.size);
+               else
+                       fprintf(f, "]");
                type_print(type->array.member, f);
        }
 
        static struct type array_prototype = {
-               .prepare = array_prepare,
                .init = array_init,
+               .prepare_type = array_prepare_type,
                .print_type = array_print_type,
                .compat = array_compat,
                .free = array_free,
+               .size = sizeof(void*),
+               .align = sizeof(void*),
        };
 
+###### declare terminals
+       $TERM [ ]
+
 ###### type grammar
 
-       | [ NUMBER ] Type ${
-               $0 = calloc(1, sizeof(struct type));
-               *($0) = array_prototype;
-               $0->array.member = $<4;
-               $0->array.vsize = NULL;
-               {
+       | [ NUMBER ] Type ${ {
                char tail[3];
                mpq_t num;
+               struct type *t;
+               int elements = 0;
+
                if (number_parse(num, tail, $2.txt) == 0)
                        tok_err(c, "error: unrecognised number", &$2);
-               else if (tail[0])
+               else if (tail[0]) {
                        tok_err(c, "error: unsupported number suffix", &$2);
-               else {
-                       $0->array.size = mpz_get_ui(mpq_numref(num));
+                       mpq_clear(num);
+               } else {
+                       elements = mpz_get_ui(mpq_numref(num));
                        if (mpz_cmp_ui(mpq_denref(num), 1) != 0) {
                                tok_err(c, "error: array size must be an integer",
                                        &$2);
@@ -1694,10 +2531,12 @@ make a copy of an array with controllable depth.
                                        &$2);
                        mpq_clear(num);
                }
-               $0->next= c->anon_typelist;
-               c->anon_typelist = $0;
-               }
-       }$
+
+               $0 = t = add_anon_type(c, &array_prototype, "array[%d]", elements );
+               t->array.size = elements;
+               t->array.member = $<4;
+               t->array.vsize = NULL;
+       } }$
 
        | [ IDENTIFIER ] Type ${ {
                struct variable *v = var_ref(c, $2.txt);
@@ -1707,34 +2546,39 @@ make a copy of an array with controllable depth.
                else if (!v->constant)
                        tok_err(c, "error: array size must be a constant", &$2);
 
-               $0 = calloc(1, sizeof(struct type));
-               *($0) = array_prototype;
+               $0 = add_anon_type(c, &array_prototype, "array[%.*s]", $2.txt.len, $2.txt.txt);
                $0->array.member = $<4;
                $0->array.size = 0;
                $0->array.vsize = v;
-               $0->next= c->anon_typelist;
-               c->anon_typelist = $0;
        } }$
 
-###### parse context
-
-       struct type *anon_typelist;
+###### Grammar
+       $*type
+       OptType -> Type ${ $0 = $<1; }$
+               | ${ $0 = NULL; }$
 
-###### free context types
+###### formal type grammar
 
-       while (context.anon_typelist) {
-               struct type *t = context.anon_typelist;
+       | [ IDENTIFIER :: OptType ] Type ${ {
+               struct variable *v = var_decl(c, $ID.txt);
 
-               context.anon_typelist = t->next;
-               free(t);
-       }
+               v->type = $<OT;
+               v->constant = 1;
+               if (!v->type)
+                       v->type = Tnum;
+               $0 = add_anon_type(c, &array_prototype, "array[var]");
+               $0->array.member = $<6;
+               $0->array.size = 0;
+               $0->array.unspec = 1;
+               $0->array.vsize = v;
+       } }$
 
 ###### Binode types
        Index,
 
-###### variable grammar
+###### term grammar
 
-       | Variable [ Expression ] ${ {
+       | Term [ Expression ] ${ {
                struct binode *b = new(binode);
                b->op = Index;
                b->left = $<1;
@@ -1744,9 +2588,9 @@ make a copy of an array with controllable depth.
 
 ###### print binode cases
        case Index:
-               print_exec(b->left, -1, 0);
+               print_exec(b->left, -1, bracket);
                printf("[");
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
                printf("]");
                break;
 
@@ -1755,8 +2599,8 @@ make a copy of an array with controllable depth.
                /* left must be an array, right must be a number,
                 * result is the member type of the array
                 */
-               propagate_types(b->right, c, ok, Tnum, 0);
-               t = propagate_types(b->left, c, ok, NULL, rules & Rnoconstant);
+               propagate_types(b->right, c, perr, Tnum, 0);
+               t = propagate_types(b->left, c, perr, NULL, rules & Rnoconstant);
                if (!t || t->compat != array_compat) {
                        type_err(c, "error: %1 cannot be indexed", prog, t, 0, NULL);
                        return NULL;
@@ -1773,18 +2617,25 @@ make a copy of an array with controllable depth.
        case Index: {
                mpz_t q;
                long i;
+               void *ptr;
 
-               lleft = linterp_exec(b->left);
-               right = interp_exec(b->right);
+               lleft = linterp_exec(c, b->left, &ltype);
+               right = interp_exec(c, b->right, &rtype);
                mpz_init(q);
                mpz_tdiv_q(q, mpq_numref(right.num), mpq_denref(right.num));
                i = mpz_get_si(q);
                mpz_clear(q);
 
-               if (i >= 0 && i < lleft->type->array.size)
-                       lrv = &lleft->array.elmnts[i];
+               if (ltype->array.static_size)
+                       ptr = lleft;
+               else
+                       ptr = *(void**)lleft;
+               rvtype = ltype->array.member;
+               if (i >= 0 && i < ltype->array.size)
+                       lrv = ptr + i * rvtype->size;
                else
-                       rv = val_init(lleft->type->array.member);
+                       val_init(ltype->array.member, &rv); // UNSAFE
+               ltype = NULL;
                break;
        }
 
@@ -1807,7 +2658,7 @@ is not prefixed by the word `struct` as it would be in C.
 
 Structs are only treated as the same if they have the same name.
 Simply having the same fields in the same order is not enough.  This
-might change once we can create structure initializes from a list of
+might change once we can create structure initializers from a list of
 values.
 
 Each component datum is identified much like a variable is declared,
@@ -1836,66 +2687,159 @@ function will be needed.
                struct field {
                        struct text name;
                        struct type *type;
-                       struct value init;
-               } *fields;
-       } structure;
-
-###### value union fields
-       struct {
-               struct value *fields;
+                       struct value *init;
+                       int offset;
+               } *fields; // This is created when field_list is analysed.
+               struct fieldlist {
+                       struct fieldlist *prev;
+                       struct field f;
+                       struct exec *init;
+               } *field_list; // This is created during parsing
        } structure;
 
 ###### type functions
        void (*print_type_decl)(struct type *type, FILE *f);
+       struct type *(*fieldref)(struct type *t, struct parse_context *c,
+                                struct fieldref *f, struct value **vp);
 
 ###### value functions
 
-       static struct value structure_prepare(struct type *type)
+       static void structure_init(struct type *type, struct value *val)
        {
-               struct value ret;
+               int i;
 
-               ret.type = type;
-               ret.structure.fields = NULL;
-               return ret;
+               for (i = 0; i < type->structure.nfields; i++) {
+                       struct value *v;
+                       v = (void*) val->ptr + type->structure.fields[i].offset;
+                       if (type->structure.fields[i].init)
+                               dup_value(type->structure.fields[i].type,
+                                         type->structure.fields[i].init,
+                                         v);
+                       else
+                               val_init(type->structure.fields[i].type, v);
+               }
        }
 
-       static struct value structure_init(struct type *type)
+       static void structure_free(struct type *type, struct value *val)
        {
-               struct value ret;
                int i;
 
-               ret.type = type;
-               ret.structure.fields = calloc(type->structure.nfields,
-                                             sizeof(ret.structure.fields[0]));
-               for (i = 0; ret.structure.fields && i < type->structure.nfields; i++)
-                       ret.structure.fields[i] = val_init(type->structure.fields[i].type);
-               return ret;
+               for (i = 0; i < type->structure.nfields; i++) {
+                       struct value *v;
+                       v = (void*)val->ptr + type->structure.fields[i].offset;
+                       free_value(type->structure.fields[i].type, v);
+               }
        }
 
-       static void structure_free(struct value val)
+       static void free_fieldlist(struct fieldlist *f)
        {
-               int i;
-
-               if (val.structure.fields)
-                       for (i = 0; i < val.type->structure.nfields; i++)
-                               free_value(val.structure.fields[i]);
-               free(val.structure.fields);
+               if (!f)
+                       return;
+               free_fieldlist(f->prev);
+               free_exec(f->init);
+               free(f);
        }
 
        static void structure_free_type(struct type *t)
        {
                int i;
                for (i = 0; i < t->structure.nfields; i++)
-                       free_value(t->structure.fields[i].init);
+                       if (t->structure.fields[i].init) {
+                               free_value(t->structure.fields[i].type,
+                                          t->structure.fields[i].init);
+                       }
                free(t->structure.fields);
+               free_fieldlist(t->structure.field_list);
+       }
+
+       static int structure_prepare_type(struct parse_context *c,
+                                         struct type *t, int parse_time)
+       {
+               int cnt = 0;
+               struct fieldlist *f;
+
+               if (!parse_time || t->structure.fields)
+                       return 1;
+
+               for (f = t->structure.field_list; f; f=f->prev) {
+                       enum prop_err perr;
+                       cnt += 1;
+
+                       if (f->f.type->size <= 0)
+                               return 0;
+                       if (f->f.type->prepare_type)
+                               f->f.type->prepare_type(c, f->f.type, parse_time);
+
+                       if (f->init == NULL)
+                               continue;
+                       do {
+                               perr = 0;
+                               propagate_types(f->init, c, &perr, f->f.type, 0);
+                       } while (perr & Eretry);
+                       if (perr & Efail)
+                               c->parse_error += 1;    // NOTEST
+               }
+
+               t->structure.nfields = cnt;
+               t->structure.fields = calloc(cnt, sizeof(struct field));
+               f = t->structure.field_list;
+               while (cnt > 0) {
+                       int a = f->f.type->align;
+                       cnt -= 1;
+                       t->structure.fields[cnt] = f->f;
+                       if (t->size & (a-1))
+                               t->size = (t->size | (a-1)) + 1;
+                       t->structure.fields[cnt].offset = t->size;
+                       t->size += ((f->f.type->size - 1) | (a-1)) + 1;
+                       if (a > t->align)
+                               t->align = a;
+
+                       if (f->init && !c->parse_error) {
+                               struct value vl = interp_exec(c, f->init, NULL);
+                               t->structure.fields[cnt].init =
+                                       global_alloc(c, f->f.type, NULL, &vl);
+                       }
+
+                       f = f->prev;
+               }
+               return 1;
+       }
+
+       static int find_struct_index(struct type *type, struct text field)
+       {
+               int i;
+               for (i = 0; i < type->structure.nfields; i++)
+                       if (text_cmp(type->structure.fields[i].name, field) == 0)
+                               return i;
+               return IndexInvalid;
+       }
+
+       static struct type *structure_fieldref(struct type *t, struct parse_context *c,
+                                              struct fieldref *f, struct value **vp)
+       {
+               if (f->index == IndexUnknown) {
+                       f->index = find_struct_index(t, f->name);
+                       if (f->index < 0)
+                               type_err(c, "error: cannot find requested field in %1",
+                                        f->left, t, 0, NULL);
+               }
+               if (f->index < 0)
+                       return NULL;
+               if (vp) {
+                       struct value *v = *vp;
+                       v = (void*)v->ptr + t->structure.fields[f->index].offset;
+                       *vp = v;
+               }
+               return t->structure.fields[f->index].type;
        }
 
        static struct type structure_prototype = {
-               .prepare = structure_prepare,
                .init = structure_init,
                .free = structure_free,
                .free_type = structure_free_type,
                .print_type_decl = structure_print_type,
+               .prepare_type = structure_prepare_type,
+               .fieldref = structure_fieldref,
        };
 
 ###### exec type
@@ -1908,6 +2852,7 @@ function will be needed.
                int index;
                struct text name;
        };
+       enum { IndexUnknown = -1, IndexInvalid = -2 };
 
 ###### free exec cases
        case Xfieldref:
@@ -1915,13 +2860,16 @@ function will be needed.
                free(e);
                break;
 
-###### variable grammar
+###### declare terminals
+       $TERM struct
 
-       | Variable . IDENTIFIER ${ {
+###### term grammar
+
+       | Term . IDENTIFIER ${ {
                struct fieldref *fr = new_pos(fieldref, $2);
                fr->left = $<1;
                fr->name = $3.txt;
-               fr->index = -2;
+               fr->index = IndexUnknown;
                $0 = fr;
        } }$
 
@@ -1930,46 +2878,27 @@ function will be needed.
        case Xfieldref:
        {
                struct fieldref *f = cast(fieldref, e);
-               print_exec(f->left, -1, 0);
+               print_exec(f->left, -1, bracket);
                printf(".%.*s", f->name.len, f->name.txt);
                break;
        }
 
-###### ast functions
-       static int find_struct_index(struct type *type, struct text field)
-       {
-               int i;
-               for (i = 0; i < type->structure.nfields; i++)
-                       if (text_cmp(type->structure.fields[i].name, field) == 0)
-                               return i;
-               return -1;
-       }
-
 ###### propagate exec cases
 
        case Xfieldref:
        {
                struct fieldref *f = cast(fieldref, prog);
-               struct type *st = propagate_types(f->left, c, ok, NULL, 0);
+               struct type *st = propagate_types(f->left, c, perr, NULL, 0);
 
-               if (!st)
-                       type_err(c, "error: unknown type for field access", f->left,
-                                NULL, 0, NULL);
-               else if (st->prepare != structure_prepare)
-                       type_err(c, "error: field reference attempted on %1, not a struct",
+               if (!st || !st->fieldref)
+                       type_err(c, "error: field reference on %1 is not supported",
                                 f->left, st, 0, NULL);
-               else if (f->index == -2) {
-                       f->index = find_struct_index(st, f->name);
-                       if (f->index < 0)
-                               type_err(c, "error: cannot find requested field in %1",
-                                        f->left, st, 0, NULL);
-               }
-               if (f->index >= 0) {
-                       struct type *ft = st->structure.fields[f->index].type;
-                       if (!type_compat(type, ft, rules))
+               else {
+                       t = st->fieldref(st, c, f, NULL);
+                       if (t && !type_compat(type, t, rules))
                                type_err(c, "error: have %1 but need %2", prog,
-                                        ft, rules, type);
-                       return ft;
+                                        t, rules, type);
+                       return t;
                }
                break;
        }
@@ -1978,523 +2907,871 @@ function will be needed.
        case Xfieldref:
        {
                struct fieldref *f = cast(fieldref, e);
-               struct value *lleft = linterp_exec(f->left);
-               lrv = &lleft->structure.fields[f->index];
+               struct type *ltype;
+               struct value *lleft = linterp_exec(c, f->left, &ltype);
+               lrv = lleft;
+               rvtype = ltype->fieldref(ltype, c, f, &lrv);
+               break;
+       }
+
+###### top level grammar
+       DeclareStruct -> struct IDENTIFIER FieldBlock Newlines ${ {
+               struct type *t;
+               t = find_type(c, $ID.txt);
+               if (!t)
+                       t = add_type(c, $ID.txt, &structure_prototype);
+               else if (t->size >= 0) {
+                       tok_err(c, "error: type already declared", &$ID);
+                       tok_err(c, "info: this is location of declartion", &t->first_use);
+                       /* Create a new one - duplicate */
+                       t = add_type(c, $ID.txt, &structure_prototype);
+               } else {
+                       struct type tmp = *t;
+                       *t = structure_prototype;
+                       t->name = tmp.name;
+                       t->next = tmp.next;
+               }
+               t->structure.field_list = $<FB;
+               t->first_use = $ID;
+       } }$
+
+       $*fieldlist
+       FieldBlock -> { IN OptNL FieldLines OUT OptNL } ${ $0 = $<FL; }$
+       | { SimpleFieldList } ${ $0 = $<SFL; }$
+       | IN OptNL FieldLines OUT ${ $0 = $<FL; }$
+       | SimpleFieldList EOL ${ $0 = $<SFL; }$
+
+       FieldLines -> SimpleFieldList Newlines ${ $0 = $<SFL; }$
+       | FieldLines SimpleFieldList Newlines ${
+               $SFL->prev = $<FL;
+               $0 = $<SFL;
+       }$
+
+       SimpleFieldList -> Field ${ $0 = $<F; }$
+       | SimpleFieldList ; Field ${
+               $F->prev = $<SFL;
+               $0 = $<F;
+       }$
+       | SimpleFieldList ; ${
+               $0 = $<SFL;
+       }$
+       | ERROR ${ tok_err(c, "Syntax error in struct field", &$1); }$
+
+       Field -> IDENTIFIER : Type = Expression ${ {
+               $0 = calloc(1, sizeof(struct fieldlist));
+               $0->f.name = $ID.txt;
+               $0->f.type = $<Type;
+               $0->f.init = NULL;
+               $0->init = $<Expr;
+       } }$
+       | IDENTIFIER : Type ${
+               $0 = calloc(1, sizeof(struct fieldlist));
+               $0->f.name = $ID.txt;
+               $0->f.type = $<Type;
+       }$
+
+###### forward decls
+       static void structure_print_type(struct type *t, FILE *f);
+
+###### value functions
+       static void structure_print_type(struct type *t, FILE *f)
+       {
+               int i;
+
+               fprintf(f, "struct %.*s\n", t->name.len, t->name.txt);
+
+               for (i = 0; i < t->structure.nfields; i++) {
+                       struct field *fl = t->structure.fields + i;
+                       fprintf(f, "    %.*s : ", fl->name.len, fl->name.txt);
+                       type_print(fl->type, f);
+                       if (fl->type->print && fl->init) {
+                               fprintf(f, " = ");
+                               if (fl->type == Tstr)
+                                       fprintf(f, "\"");       // UNTESTED
+                               print_value(fl->type, fl->init, f);
+                               if (fl->type == Tstr)
+                                       fprintf(f, "\"");       // UNTESTED
+                       }
+                       fprintf(f, "\n");
+               }
+       }
+
+###### print type decls
+       {
+               struct type *t;
+               int target = -1;
+
+               while (target != 0) {
+                       int i = 0;
+                       for (t = context.typelist; t ; t=t->next)
+                               if (!t->anon && t->print_type_decl &&
+                                   !t->check_args) {
+                                       i += 1;
+                                       if (i == target)
+                                               break;
+                               }
+
+                       if (target == -1) {
+                               target = i;
+                       } else {
+                               t->print_type_decl(t, stdout);
+                               target -= 1;
+                       }
+               }
+       }
+
+#### References
+
+References, or pointers, are values that refer to another value.  They
+can only refer to a `struct`, though as a struct can embed anything they
+can effectively refer to anything.
+
+References are potentially dangerous as they might refer to some
+variable which no longer exists - either because a stack frame
+containing it has been discarded or because the value was allocated on
+the heap and has now been free.  Ocean does not yet provide any
+protection against these problems.  It will in due course.
+
+With references comes the opportunity and the need to explicitly
+allocate values on the "heap" and to free them.  We currently provide
+fairly basic support for this.
+
+Reference make use of the `@` symbol in various ways.  A type that starts
+with `@` is a reference to whatever follows.  A reference value
+followed by an `@` acts as the referred value, though the `@` is often
+not needed.  Finally, an expression that starts with `@` is a special
+reference related expression.  Some examples might help.
+
+##### Example: Reference examples
+
+       struct foo
+               a: number
+               b: string
+       ref: @foo
+       bar: foo
+       bar.number = 23; bar.string = "hello"
+       baz: foo
+       ref = bar
+       baz = @ref
+       baz.a = ref.a * 2
+
+       ref = @new()
+       ref@ = baz
+       @free = ref
+       ref = @nil
+
+Obviously this is very contrived.  `ref` is a reference to a `foo` which
+is initially set to refer to the value stored in `bar` - no extra syntax
+is needed to "Take the address of" `bar` - the fact that `ref` is a
+reference means that only the address make sense.
+
+When `ref.a` is accessed, that is whatever value is stored in `bar.a`.
+The same syntax is used for accessing fields both in structs and in
+references to structs.  It would be correct to use `ref@.a`, but not
+necessary.
+
+`@new()` creates an object of whatever type is needed for the program
+to by type-correct.  In future iterations of Ocean, arguments a
+constructor will access arguments, so the the syntax now looks like a
+function call.  `@free` can be assigned any reference that was returned
+by `@new()`, and it will be freed.  `@nil` is a value of whatever
+reference type is appropriate, and is stable and never the address of
+anything in the heap or on the stack.  A reference can be assigned
+`@nil` or compared against that value.
+
+###### declare terminals
+       $TERM @
+
+###### type union fields
+
+       struct {
+               struct type *referent;
+       } reference;
+
+###### value union fields
+       struct value *ref;
+
+###### value functions
+
+       static void reference_print_type(struct type *t, FILE *f)
+       {
+               fprintf(f, "@");
+               type_print(t->reference.referent, f);
+       }
+
+       static int reference_cmp(struct type *tl, struct type *tr,
+                                struct value *left, struct value *right)
+       {
+               return left->ref == right->ref ? 0 : 1;
+       }
+
+       static void reference_dup(struct type *t,
+                                 struct value *vold, struct value *vnew)
+       {
+               vnew->ref = vold->ref;
+       }
+
+       static void reference_free(struct type *t, struct value *v)
+       {
+               /* Nothing to do here */
+       }
+
+       static int reference_compat(struct type *require, struct type *have)
+       {
+               if (have->compat != require->compat)
+                       return 0;
+               if (have->reference.referent != require->reference.referent)
+                       return 0;
+               return 1;
+       }
+
+       static int reference_test(struct type *type, struct value *val)
+       {
+               return val->ref != NULL;
+       }
+
+       static struct type *reference_fieldref(struct type *t, struct parse_context *c,
+                                              struct fieldref *f, struct value **vp)
+       {
+               struct type *rt = t->reference.referent;
+
+               if (rt->fieldref) {
+                       if (vp)
+                               *vp = (*vp)->ref;
+                       return rt->fieldref(rt, c, f, vp);
+               }
+               type_err(c, "error: field reference on %1 is not supported",
+                                f->left, rt, 0, NULL);
+               return Tnone;
+       }
+
+
+       static struct type reference_prototype = {
+               .print_type = reference_print_type,
+               .cmp_eq = reference_cmp,
+               .dup = reference_dup,
+               .test = reference_test,
+               .free = reference_free,
+               .compat = reference_compat,
+               .fieldref = reference_fieldref,
+               .size = sizeof(void*),
+               .align = sizeof(void*),
+       };
+
+###### type grammar
+
+       | @ IDENTIFIER ${ {
+               struct type *t = find_type(c, $ID.txt);
+               if (!t) {
+                       t = add_type(c, $ID.txt, NULL);
+                       t->first_use = $ID;
+               }
+               $0 = find_anon_type(c, &reference_prototype, "@%.*s",
+                                   $ID.txt.len, $ID.txt.txt);
+               $0->reference.referent = t;
+       } }$
+
+###### core functions
+       static int text_is(struct text t, char *s)
+       {
+               return (strlen(s) == t.len &&
+                       strncmp(s, t.txt, t.len) == 0);
+       }
+
+###### exec type
+       Xref,
+
+###### ast
+       struct ref {
+               struct exec;
+               enum ref_func { RefNew, RefFree, RefNil } action;
+               struct type *reftype;
+               struct exec *right;
+       };
+
+###### SimpleStatement Grammar
+
+       | @ IDENTIFIER = Expression ${ {
+               struct ref *r = new_pos(ref, $ID);
+               // Must be "free"
+               if (!text_is($ID.txt, "free"))
+                       tok_err(c, "error: only \"@free\" makes sense here",
+                               &$ID);
+
+               $0 = r;
+               r->action = RefFree;
+               r->right = $<Exp;
+       } }$
+
+###### expression grammar
+       | @ IDENTIFIER ( ) ${
+               // Only 'new' valid here
+               if (!text_is($ID.txt, "new")) {
+                       tok_err(c, "error: Only reference function is \"@new()\"",
+                               &$ID);
+               } else {
+                       struct ref *r = new_pos(ref,$ID);
+                       $0 = r;
+                       r->action = RefNew;
+               }
+       }$
+       | @ IDENTIFIER ${
+               // Only 'nil' valid here
+               if (!text_is($ID.txt, "nil")) {
+                       tok_err(c, "error: Only reference value is \"@nil\"",
+                               &$ID);
+               } else {
+                       struct ref *r = new_pos(ref,$ID);
+                       $0 = r;
+                       r->action = RefNil;
+               }
+       }$
+
+###### print exec cases
+       case Xref: {
+               struct ref *r = cast(ref, e);
+               switch (r->action) {
+               case RefNew:
+                       printf("@new()"); break;
+               case RefNil:
+                       printf("@nil"); break;
+               case RefFree:
+                       do_indent(indent, "@free = ");
+                       print_exec(r->right, indent, bracket);
+                       break;
+               }
+               break;
+       }
+
+###### propagate exec cases
+       case Xref: {
+               struct ref *r = cast(ref, prog);
+               switch (r->action) {
+               case RefNew:
+                       if (type && type->free != reference_free) {
+                               type_err(c, "error: @new() can only be used with references, not %1",
+                                        prog, type, 0, NULL);
+                               return NULL;
+                       }
+                       if (type && !r->reftype) {
+                               r->reftype = type;
+                               *perr |= Eretry;
+                       }
+                       return type;
+               case RefNil:
+                       if (type && type->free != reference_free)
+                               type_err(c, "error: @nil can only be used with reference, not %1",
+                                        prog, type, 0, NULL);
+                       if (type && !r->reftype) {
+                               r->reftype = type;
+                               *perr |= Eretry;
+                       }
+                       return type;
+               case RefFree:
+                       t = propagate_types(r->right, c, perr, NULL, 0);
+                       if (t && t->free != reference_free)
+                               type_err(c, "error: @free can only be assigned a reference, not %1",
+                                        prog, t, 0, NULL);
+                       r->reftype = Tnone;
+                       return Tnone;
+               }
+               break;  // NOTEST
+       }
+
+
+###### interp exec cases
+       case Xref: {
+               struct ref *r = cast(ref, e);
+               switch (r->action) {
+               case RefNew:
+                       if (r->reftype)
+                               rv.ref = calloc(1, r->reftype->reference.referent->size);
+                       rvtype = r->reftype;
+                       break;
+               case RefNil:
+                       rv.ref = NULL;
+                       rvtype = r->reftype;
+                       break;
+               case RefFree:
+                       rv = interp_exec(c, r->right, &rvtype);
+                       free_value(rvtype->reference.referent, rv.ref);
+                       free(rv.ref);
+                       rvtype = Tnone;
+                       break;
+               }
+               break;
+       }
+
+###### free exec cases
+       case Xref: {
+               struct ref *r = cast(ref, e);
+               free_exec(r->right);
+               free(r);
+               break;
+       }
+
+###### Expressions: dereference
+
+###### Binode types
+       Deref,
+
+###### term grammar
+
+       | Term @ ${ {
+               struct binode *b = new(binode);
+               b->op = Deref;
+               b->left = $<Trm;
+               $0 = b;
+       } }$
+
+###### print binode cases
+       case Deref:
+               print_exec(b->left, -1, bracket);
+               printf("@");
+               break;
+
+###### propagate binode cases
+       case Deref:
+               /* left must be a reference, and we return what it refers to */
+               /* FIXME how can I pass the expected type down? */
+               t = propagate_types(b->left, c, perr, NULL, 0);
+               if (!t || t->free != reference_free)
+                       type_err(c, "error: Cannot dereference %1", b, t, 0, NULL);
+               else
+                       return t->reference.referent;
+               break;
+
+###### interp binode cases
+       case Deref: {
+               left = interp_exec(c, b->left, &ltype);
+               lrv = left.ref;
+               rvtype = ltype->reference.referent;
                break;
        }
 
-###### ast
-       struct fieldlist {
-               struct fieldlist *prev;
-               struct field f;
-       };
 
-###### ast functions
-       static void free_fieldlist(struct fieldlist *f)
-       {
-               if (!f)
-                       return;
-               free_fieldlist(f->prev);
-               free_value(f->f.init);
-               free(f);
-       }
+#### Functions
 
-###### top level grammar
-       DeclareStruct -> struct IDENTIFIER FieldBlock ${ {
-               struct type *t =
-                       add_type(c, $2.txt, &structure_prototype);
-               int cnt = 0;
-               struct fieldlist *f;
+A function is a chunk of code which can be passed parameters and can
+return results.  Each function has a type which includes the set of
+parameters and the return value.  As yet these types cannot be declared
+separately from the function itself.
 
-               for (f = $3; f; f=f->prev)
-                       cnt += 1;
+The parameters can be specified either in parentheses as a ';' separated
+list, such as
 
-               t->structure.nfields = cnt;
-               t->structure.fields = calloc(cnt, sizeof(struct field));
-               f = $3;
-               while (cnt > 0) {
-                       cnt -= 1;
-                       t->structure.fields[cnt] = f->f;
-                       f->f.init = val_prepare(Tnone);
-                       f = f->prev;
-               }
-       } }$
+##### Example: function 1
 
-       $void
-       Open -> {
-               | NEWLINE Open
-       Close -> }
-               | NEWLINE Close
-       $*fieldlist
-       FieldBlock -> Open FieldList Close ${ $0 = $<2; }$
-               | Open SimpleFieldList } ${ $0 = $<2; }$
-               | : FieldList  ${ $0 = $<2; }$
-
-       FieldList -> SimpleFieldList NEWLINE ${ $0 = $<1; }$
-               | FieldList SimpleFieldList NEWLINE ${
-                       $2->prev = $<1;
-                       $0 = $<2;
-               }$
-
-       SimpleFieldList -> Field ${ $0 = $<1; }$
-               | SimpleFieldList ; Field ${
-                       $3->prev = $<1;
-                       $0 = $<3;
-               }$
-               | SimpleFieldList ; ${
-                       $0 = $<1;
-               }$
+       func main(av:[ac::number]string; env:[envc::number]string)
+               code block
 
-       Field -> IDENTIFIER : Type = Expression ${ {
-                       int ok;
+or as an indented list of one parameter per line (though each line can
+be a ';' separated list)
 
-                       $0 = calloc(1, sizeof(struct fieldlist));
-                       $0->f.name = $1.txt;
-                       $0->f.type = $<3;
-                       $0->f.init = val_prepare($0->f.type);
-                       do {
-                               ok = 1;
-                               propagate_types($<5, c, &ok, $3, 0);
-                       } while (ok == 2);
-                       if (!ok)
-                               c->parse_error = 1;
-                       else
-                               $0->f.init = interp_exec($5);
-               } }$
-               | IDENTIFIER : Type ${
-                       $0 = calloc(1, sizeof(struct fieldlist));
-                       $0->f.name = $1.txt;
-                       $0->f.type = $<3;
-                       $0->f.init = val_init($3);
-               }$
-               | ERROR ${ tok_err(c, "Syntax error in struct field", &$1); }$
+##### Example: function 2
 
-###### forward decls
-       static void structure_print_type(struct type *t, FILE *f);
+       func main
+               argv:[argc::number]string
+               env:[envc::number]string
+       do
+               code block
 
-###### value functions
-       static void structure_print_type(struct type *t, FILE *f)
-       {
-               int i;
+In the first case a return type can follow the parentheses after a colon,
+in the second it is given on a line starting with the word `return`.
 
-               fprintf(f, "struct %.*s:\n", t->name.len, t->name.txt);
+##### Example: functions that return
 
-               for (i = 0; i < t->structure.nfields; i++) {
-                       struct field *fl = t->structure.fields + i;
-                       fprintf(f, "    %.*s : ", fl->name.len, fl->name.txt);
-                       type_print(fl->type, f);
-                       if (fl->init.type->print) {
-                               fprintf(f, " = ");
-                               if (fl->init.type == Tstr)
-                                       fprintf(f, "\"");
-                               print_value(fl->init);
-                               if (fl->init.type == Tstr)
-                                       fprintf(f, "\"");
-                       }
-                       printf("\n");
-               }
-       }
+       func add(a:number; b:number): number
+               code block
 
-###### print type decls
-       {
-               struct type *t;
-               int target = -1;
+       func catenate
+               a: string
+               b: string
+       return string
+       do
+               code block
 
-               while (target != 0) {
-                       int i = 0;
-                       for (t = context.typelist; t ; t=t->next)
-                               if (t->print_type_decl) {
-                                       i += 1;
-                                       if (i == target)
-                                               break;
-                               }
+Rather than returning a type, the function can specify a set of local
+variables to return as a struct.  The values of these variables when the
+function exits will be provided to the caller.  For this the return type
+is replaced with a block of result declarations, either in parentheses
+or bracketed by `return` and `do`.
 
-                       if (target == -1) {
-                               target = i;
-                       } else {
-                               t->print_type_decl(t, stdout);
-                               target -= 1;
-                       }
-               }
-       }
+##### Example: functions returning multiple variables
 
-## Executables: the elements of code
+       func to_cartesian(rho:number; theta:number):(x:number; y:number)
+               x = .....
+               y = .....
 
-Each code element needs to be parsed, printed, analysed,
-interpreted, and freed.  There are several, so let's just start with
-the easy ones and work our way up.
+       func to_polar
+               x:number; y:number
+       return
+               rho:number
+               theta:number
+       do
+               rho = ....
+               theta = ....
 
-### Values
+For constructing the lists we use a `List` binode, which will be
+further detailed when Expression Lists are introduced.
 
-We have already met values as separate objects.  When manifest
-constants appear in the program text, that must result in an executable
-which has a constant value.  So the `val` structure embeds a value in
-an executable.
+###### type union fields
 
-###### exec type
-       Xval,
+       struct {
+               struct binode *params;
+               struct type *return_type;
+               struct variable *scope;
+               int inline_result;      // return value is at start of 'local'
+               int local_size;
+       } function;
 
-###### ast
-       struct val {
-               struct exec;
-               struct value val;
-       };
+###### value union fields
+       struct exec *function;
 
-###### Grammar
+###### type functions
+       void (*check_args)(struct parse_context *c, enum prop_err *perr,
+                          struct type *require, struct exec *args);
 
-       $*val
-       Value ->  True ${
-                       $0 = new_pos(val, $1);
-                       $0->val.type = Tbool;
-                       $0->val.bool = 1;
-                       }$
-               | False ${
-                       $0 = new_pos(val, $1);
-                       $0->val.type = Tbool;
-                       $0->val.bool = 0;
-                       }$
-               | NUMBER ${
-                       $0 = new_pos(val, $1);
-                       $0->val.type = Tnum;
-                       {
-                       char tail[3];
-                       if (number_parse($0->val.num, tail, $1.txt) == 0)
-                               mpq_init($0->val.num);
-                               if (tail[0])
-                                       tok_err(c, "error: unsupported number suffix",
-                                               &$1);
-                       }
-                       }$
-               | STRING ${
-                       $0 = new_pos(val, $1);
-                       $0->val.type = Tstr;
-                       {
-                       char tail[3];
-                       string_parse(&$1, '\\', &$0->val.str, tail);
-                       if (tail[0])
-                               tok_err(c, "error: unsupported string suffix",
-                                       &$1);
-                       }
-                       }$
-               | MULTI_STRING ${
-                       $0 = new_pos(val, $1);
-                       $0->val.type = Tstr;
-                       {
-                       char tail[3];
-                       string_parse(&$1, '\\', &$0->val.str, tail);
-                       if (tail[0])
-                               tok_err(c, "error: unsupported string suffix",
-                                       &$1);
-                       }
-                       }$
+###### value functions
 
-###### print exec cases
-       case Xval:
+       static void function_free(struct type *type, struct value *val)
        {
-               struct val *v = cast(val, e);
-               if (v->val.type == Tstr)
-                       printf("\"");
-               print_value(v->val);
-               if (v->val.type == Tstr)
-                       printf("\"");
-               break;
+               free_exec(val->function);
+               val->function = NULL;
        }
 
-###### propagate exec cases
-       case Xval:
+       static int function_compat(struct type *require, struct type *have)
        {
-               struct val *val = cast(val, prog);
-               if (!type_compat(type, val->val.type, rules))
-                       type_err(c, "error: expected %1%r found %2",
-                                  prog, type, rules, val->val.type);
-               return val->val.type;
+               // FIXME can I do anything here yet?
+               return 0;
        }
 
-###### interp exec cases
-       case Xval:
-               rv = dup_value(cast(val, e)->val);
-               break;
-
-###### ast functions
-       static void free_val(struct val *v)
+       static void function_check_args(struct parse_context *c, enum prop_err *perr,
+                                       struct type *require, struct exec *args)
        {
-               if (!v)
-                       return;
-               free_value(v->val);
-               free(v);
+               /* This should be 'compat', but we don't have a 'tuple' type to
+                * hold the type of 'args'
+                */
+               struct binode *arg = cast(binode, args);
+               struct binode *param = require->function.params;
+
+               while (param) {
+                       struct var *pv = cast(var, param->left);
+                       if (!arg) {
+                               type_err(c, "error: insufficient arguments to function.",
+                                        args, NULL, 0, NULL);
+                               break;
+                       }
+                       *perr = 0;
+                       propagate_types(arg->left, c, perr, pv->var->type, 0);
+                       param = cast(binode, param->right);
+                       arg = cast(binode, arg->right);
+               }
+               if (arg)
+                       type_err(c, "error: too many arguments to function.",
+                                args, NULL, 0, NULL);
        }
 
-###### free exec cases
-       case Xval: free_val(cast(val, e)); break;
-
-###### ast functions
-       // Move all nodes from 'b' to 'rv', reversing the order.
-       // In 'b' 'left' is a list, and 'right' is the last node.
-       // In 'rv', left' is the first node and 'right' is a list.
-       static struct binode *reorder_bilist(struct binode *b)
+       static void function_print(struct type *type, struct value *val, FILE *f)
        {
-               struct binode *rv = NULL;
+               print_exec(val->function, 1, 0);
+       }
 
-               while (b) {
-                       struct exec *t = b->right;
-                       b->right = rv;
-                       rv = b;
-                       if (b->left)
-                               b = cast(binode, b->left);
-                       else
-                               b = NULL;
-                       rv->left = t;
+       static void function_print_type_decl(struct type *type, FILE *f)
+       {
+               struct binode *b;
+               fprintf(f, "(");
+               for (b = type->function.params; b; b = cast(binode, b->right)) {
+                       struct variable *v = cast(var, b->left)->var;
+                       fprintf(f, "%.*s%s", v->name->name.len, v->name->name.txt,
+                               v->constant ? "::" : ":");
+                       type_print(v->type, f);
+                       if (b->right)
+                               fprintf(f, "; ");
                }
-               return rv;
+               fprintf(f, ")");
+               if (type->function.return_type != Tnone) {
+                       fprintf(f, ":");
+                       if (type->function.inline_result) {
+                               int i;
+                               struct type *t = type->function.return_type;
+                               fprintf(f, " (");
+                               for (i = 0; i < t->structure.nfields; i++) {
+                                       struct field *fl = t->structure.fields + i;
+                                       if (i)
+                                               fprintf(f, "; ");
+                                       fprintf(f, "%.*s:", fl->name.len, fl->name.txt);
+                                       type_print(fl->type, f);
+                               }
+                               fprintf(f, ")");
+                       } else
+                               type_print(type->function.return_type, f);
+               }
+               fprintf(f, "\n");
        }
 
-### Variables
+       static void function_free_type(struct type *t)
+       {
+               free_exec(t->function.params);
+       }
 
-Just as we used a `val` to wrap a value into an `exec`, we similarly
-need a `var` to wrap a `variable` into an exec.  While each `val`
-contained a copy of the value, each `var` hold a link to the variable
-because it really is the same variable no matter where it appears.
-When a variable is used, we need to remember to follow the `->merged`
-link to find the primary instance.
+       static struct type function_prototype = {
+               .size = sizeof(void*),
+               .align = sizeof(void*),
+               .free = function_free,
+               .compat = function_compat,
+               .check_args = function_check_args,
+               .print = function_print,
+               .print_type_decl = function_print_type_decl,
+               .free_type = function_free_type,
+       };
 
-###### exec type
-       Xvar,
+###### declare terminals
 
-###### ast
-       struct var {
-               struct exec;
-               struct variable *var;
-       };
+       $TERM func
+
+###### Binode types
+       List,
 
 ###### Grammar
 
-       $*var
-       VariableDecl -> IDENTIFIER : ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
-               $0->var = v;
-               if (v)
-                       v->where_decl = $0;
-               else {
-                       v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
-       } }$
-           | IDENTIFIER :: ${ {
+       $*variable
+       FuncName -> IDENTIFIER ${ {
                struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
-               $0->var = v;
+               struct var *e = new_pos(var, $1);
+               e->var = v;
                if (v) {
-                       v->where_decl = $0;
-                       v->constant = 1;
+                       v->where_decl = e;
+                       v->where_set = e;
+                       $0 = v;
                } else {
                        v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
+                       e->var = v;
+                       type_err(c, "error: function '%v' redeclared",
+                               e, NULL, 0, NULL);
                        type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
+                               v->where_decl, NULL, 0, NULL);
+                       free_exec(e);
                }
        } }$
-           | IDENTIFIER : Type ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
-               $0->var = v;
-               if (v) {
-                       v->where_decl = $0;
-                       v->where_set = $0;
-                       v->val = val_prepare($<3);
-               } else {
-                       v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
+
+       $*binode
+       Args -> ArgsLine NEWLINE ${ $0 = $<AL; }$
+       | Args ArgsLine NEWLINE ${ {
+               struct binode *b = $<AL;
+               struct binode **bp = &b;
+               while (*bp)
+                       bp = (struct binode **)&(*bp)->left;
+               *bp = $<A;
+               $0 = b;
        } }$
-           | IDENTIFIER :: Type ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new_pos(var, $1);
+
+       ArgsLine -> ${ $0 = NULL; }$
+       | Varlist ${ $0 = $<1; }$
+       | Varlist ; ${ $0 = $<1; }$
+
+       Varlist -> Varlist ; ArgDecl ${
+               $0 = new_pos(binode, $2);
+               $0->op = List;
+               $0->left = $<Vl;
+               $0->right = $<AD;
+       }$
+       | ArgDecl ${
+               $0 = new(binode);
+               $0->op = List;
+               $0->left = NULL;
+               $0->right = $<AD;
+       }$
+
+       $*var
+       ArgDecl -> IDENTIFIER : FormalType ${ {
+               struct variable *v = var_decl(c, $ID.txt);
+               $0 = new_pos(var, $ID);
                $0->var = v;
-               if (v) {
-                       v->where_decl = $0;
-                       v->where_set = $0;
-                       v->val = val_prepare($<3);
-                       v->constant = 1;
-               } else {
-                       v = var_ref(c, $1.txt);
-                       $0->var = v;
-                       type_err(c, "error: variable '%v' redeclared",
-                                $0, NULL, 0, NULL);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
+               v->where_decl = $0;
+               v->where_set = $0;
+               v->type = $<FT;
        } }$
 
-       $*exec
-       Variable -> IDENTIFIER ${ {
-               struct variable *v = var_ref(c, $1.txt);
-               $0 = new_pos(var, $1);
-               if (v == NULL) {
-                       /* This might be a label - allocate a var just in case */
-                       v = var_decl(c, $1.txt);
-                       if (v) {
-                               v->val = val_prepare(Tnone);
-                               v->where_decl = $0;
-                               v->where_set = $0;
-                       }
-               }
-               cast(var, $0)->var = v;
+##### Function calls
+
+A function call can appear either as an expression or as a statement.
+We use a new 'Funcall' binode type to link the function with a list of
+arguments, form with the 'List' nodes.
+
+We have already seen the "Term" which is how a function call can appear
+in an expression.  To parse a function call into a statement we include
+it in the "SimpleStatement Grammar" which will be described later.
+
+###### Binode types
+       Funcall,
+
+###### term grammar
+       | Term ( ExpressionList ) ${ {
+               struct binode *b = new(binode);
+               b->op = Funcall;
+               b->left = $<T;
+               b->right = reorder_bilist($<EL);
+               $0 = b;
+       } }$
+       | Term ( ) ${ {
+               struct binode *b = new(binode);
+               b->op = Funcall;
+               b->left = $<T;
+               b->right = NULL;
+               $0 = b;
        } }$
-       ## variable grammar
 
-       $*type
-       Type -> IDENTIFIER ${
-               $0 = find_type(c, $1.txt);
-               if (!$0) {
-                       tok_err(c,
-                               "error: undefined type", &$1);
+###### SimpleStatement Grammar
 
-                       $0 = Tnone;
-               }
-       }$
-       ## type grammar
+       | Term ( ExpressionList ) ${ {
+               struct binode *b = new(binode);
+               b->op = Funcall;
+               b->left = $<T;
+               b->right = reorder_bilist($<EL);
+               $0 = b;
+       } }$
 
-###### print exec cases
-       case Xvar:
-       {
-               struct var *v = cast(var, e);
-               if (v->var) {
-                       struct binding *b = v->var->name;
-                       printf("%.*s", b->name.len, b->name.txt);
+###### print binode cases
+
+       case Funcall:
+               do_indent(indent, "");
+               print_exec(b->left, -1, bracket);
+               printf("(");
+               for (b = cast(binode, b->right); b; b = cast(binode, b->right)) {
+                       if (b->left) {
+                               printf(" ");
+                               print_exec(b->left, -1, bracket);
+                               if (b->right)
+                                       printf(",");
+                       }
                }
+               printf(")");
+               if (indent >= 0)
+                       printf("\n");
                break;
-       }
 
-###### format cases
-       case 'v':
-               if (loc->type == Xvar) {
-                       struct var *v = cast(var, loc);
-                       if (v->var) {
-                               struct binding *b = v->var->name;
-                               fprintf(stderr, "%.*s", b->name.len, b->name.txt);
-                       } else
-                               fputs("???", stderr);   // NOTEST
-               } else
-                       fputs("NOTVAR", stderr);        // NOTEST
-               break;
+###### propagate binode cases
 
-###### propagate exec cases
+       case Funcall: {
+               /* Every arg must match formal parameter, and result
+                * is return type of function
+                */
+               struct binode *args = cast(binode, b->right);
+               struct var *v = cast(var, b->left);
 
-       case Xvar:
-       {
-               struct var *var = cast(var, prog);
-               struct variable *v = var->var;
-               if (!v) {
-                       type_err(c, "%d:BUG: no variable!!", prog, NULL, 0, NULL); // NOTEST
-                       return Tnone;                                   // NOTEST
-               }
-               if (v->merged)
-                       v = v->merged;
-               if (v->constant && (rules & Rnoconstant)) {
-                       type_err(c, "error: Cannot assign to a constant: %v",
-                                prog, NULL, 0, NULL);
-                       type_err(c, "info: name was defined as a constant here",
-                                v->where_decl, NULL, 0, NULL);
-                       return v->val.type;
-               }
-               if (v->val.type == Tnone && v->where_decl == prog)
-                       type_err(c, "error: variable used but not declared: %v",
-                                prog, NULL, 0, NULL);
-               if (v->val.type == NULL) {
-                       if (type && *ok != 0) {
-                               v->val = val_prepare(type);
-                               v->where_set = prog;
-                               *ok = 2;
-                       }
-                       return type;
-               }
-               if (!type_compat(type, v->val.type, rules)) {
-                       type_err(c, "error: expected %1%r but variable '%v' is %2", prog,
-                                type, rules, v->val.type);
-                       type_err(c, "info: this is where '%v' was set to %1", v->where_set,
-                                v->val.type, rules, NULL);
+               if (!v->var->type || v->var->type->check_args == NULL) {
+                       type_err(c, "error: attempt to call a non-function.",
+                                prog, NULL, 0, NULL);
+                       return NULL;
                }
-               if (!type)
-                       return v->val.type;
-               return type;
+               *perr |= Eruntime;
+               v->var->type->check_args(c, perr, v->var->type, args);
+               if (v->var->type->function.inline_result)
+                       *perr |= Emaycopy;
+               return v->var->type->function.return_type;
        }
 
-###### interp exec cases
-       case Xvar:
-       {
-               struct var *var = cast(var, e);
-               struct variable *v = var->var;
+###### interp binode cases
 
-               if (v->merged)
-                       v = v->merged;
-               lrv = &v->val;
+       case Funcall: {
+               struct var *v = cast(var, b->left);
+               struct type *t = v->var->type;
+               void *oldlocal = c->local;
+               int old_size = c->local_size;
+               void *local = calloc(1, t->function.local_size);
+               struct value *fbody = var_value(c, v->var);
+               struct binode *arg = cast(binode, b->right);
+               struct binode *param = t->function.params;
+
+               while (param) {
+                       struct var *pv = cast(var, param->left);
+                       struct type *vtype = NULL;
+                       struct value val = interp_exec(c, arg->left, &vtype);
+                       struct value *lval;
+                       c->local = local; c->local_size = t->function.local_size;
+                       lval = var_value(c, pv->var);
+                       c->local = oldlocal; c->local_size = old_size;
+                       memcpy(lval, &val, vtype->size);
+                       param = cast(binode, param->right);
+                       arg = cast(binode, arg->right);
+               }
+               c->local = local; c->local_size = t->function.local_size;
+               if (t->function.inline_result && dtype) {
+                       _interp_exec(c, fbody->function, NULL, NULL);
+                       memcpy(dest, local, dtype->size);
+                       rvtype = ret.type = NULL;
+               } else
+                       rv = interp_exec(c, fbody->function, &rvtype);
+               c->local = oldlocal; c->local_size = old_size;
+               free(local);
                break;
        }
 
-###### ast functions
+## Complex executables: statements and expressions
 
-       static void free_var(struct var *v)
-       {
-               free(v);
-       }
+Now that we have types and values and variables and most of the basic
+Terms which provide access to these, we can explore the more complex
+code that combine all of these to get useful work done.  Specifically
+statements and expressions.
 
-###### free exec cases
-       case Xvar: free_var(cast(var, e)); break;
+Expressions are various combinations of Terms.  We will use operator
+precedence to ensure correct parsing.  The simplest Expression is just a
+Term - others will follow.
+
+###### Grammar
+
+       $*exec
+       Expression -> Term ${ $0 = $<Term; }$
+       ## expression grammar
 
 ### Expressions: Conditional
 
 Our first user of the `binode` will be conditional expressions, which
 is a bit odd as they actually have three components.  That will be
 handled by having 2 binodes for each expression.  The conditional
-expression is the lowest precedence operatior, so it gets to define
-what an "Expression" is.  The next level up is "BoolExpr", which
-comes next.
+expression is the lowest precedence operator which is why we define it
+first - to start the precedence list.
 
 Conditional expressions are of the form "value `if` condition `else`
 other_value".  They associate to the right, so everything to the right
-of `else` is part of an else value, while only the BoolExpr to the
-left of `if` is the if values.  Between `if` and `else` there is no
-room for ambiguity, so a full conditional expression is allowed in there.
+of `else` is part of an else value, while only a higher-precedence to
+the left of `if` is the if values.  Between `if` and `else` there is no
+room for ambiguity, so a full conditional expression is allowed in
+there.
 
 ###### Binode types
        CondExpr,
 
-###### Grammar
+###### declare terminals
 
-       $*exec
-       Expression -> BoolExpr if Expression else Expression ${ {
-                       struct binode *b1 = new(binode);
-                       struct binode *b2 = new(binode);
-                       b1->op = CondExpr;
-                       b1->left = $<3;
-                       b1->right = b2;
-                       b2->op = CondExpr;
-                       b2->left = $<1;
-                       b2->right = $<5;
-                       $0 = b1;
-               } }$
-               | BoolExpr ${ $0 = $<1; }$
+       $LEFT if $$ifelse
+
+###### expression grammar
+
+       | Expression if Expression else Expression $$ifelse ${ {
+               struct binode *b1 = new(binode);
+               struct binode *b2 = new(binode);
+               b1->op = CondExpr;
+               b1->left = $<3;
+               b1->right = b2;
+               b2->op = CondExpr;
+               b2->left = $<1;
+               b2->right = $<5;
+               $0 = b1;
+       } }$
 
 ###### print binode cases
 
        case CondExpr:
                b2 = cast(binode, b->right);
-               print_exec(b2->left, -1, 0);
+               if (bracket) printf("(");
+               print_exec(b2->left, -1, bracket);
                printf(" if ");
-               print_exec(b->left, -1, 0);
+               print_exec(b->left, -1, bracket);
                printf(" else ");
-               print_exec(b2->right, -1, 0);
+               print_exec(b2->right, -1, bracket);
+               if (bracket) printf(")");
                break;
 
 ###### propagate binode cases
@@ -2504,9 +3781,9 @@ room for ambiguity, so a full conditional expression is allowed in there.
                struct binode *b2 = cast(binode, b->right);
                struct type *t2;
 
-               propagate_types(b->left, c, ok, Tbool, 0);
-               t = propagate_types(b2->left, c, ok, type, Rnolabel);
-               t2 = propagate_types(b2->right, c, ok, type ?: t, Rnolabel);
+               propagate_types(b->left, c, perr, Tbool, 0);
+               t = propagate_types(b2->left, c, perr, type, 0);
+               t2 = propagate_types(b2->right, c, perr, type ?: t, 0);
                return t ?: t2;
        }
 
@@ -2514,24 +3791,71 @@ room for ambiguity, so a full conditional expression is allowed in there.
 
        case CondExpr: {
                struct binode *b2 = cast(binode, b->right);
-               left = interp_exec(b->left);
+               left = interp_exec(c, b->left, &ltype);
                if (left.bool)
-                       rv = interp_exec(b2->left);
+                       rv = interp_exec(c, b2->left, &rvtype); // UNTESTED
                else
-                       rv = interp_exec(b2->right);
+                       rv = interp_exec(c, b2->right, &rvtype);
+               }
+               break;
+
+### Expression list
+
+We take a brief detour, now that we have expressions, to describe lists
+of expressions.  These will be needed for function parameters and
+possibly other situations.  They seem generic enough to introduce here
+to be used elsewhere.
+
+And ExpressionList will use the `List` type of `binode`, building up at
+the end.  And place where they are used will probably call
+`reorder_bilist()` to get a more normal first/next arrangement.
+
+###### declare terminals
+       $TERM ,
+
+`List` execs have no implicit semantics, so they are never propagated or
+interpreted.  The can be printed as a comma separate list, which is how
+they are parsed.  Note they are also used for function formal parameter
+lists.  In that case a separate function is used to print them.
+
+###### print binode cases
+       case List:
+               while (b) {
+                       printf(" ");
+                       print_exec(b->left, -1, bracket);
+                       if (b->right)
+                               printf(",");
+                       b = cast(binode, b->right);
                }
                break;
 
+###### propagate binode cases
+       case List: abort(); // NOTEST
+###### interp binode cases
+       case List: abort(); // NOTEST
+
+###### Grammar
+
+       $*binode
+       ExpressionList -> ExpressionList , Expression ${
+               $0 = new(binode);
+               $0->op = List;
+               $0->left = $<1;
+               $0->right = $<3;
+       }$
+       | Expression ${
+               $0 = new(binode);
+               $0->op = List;
+               $0->left = NULL;
+               $0->right = $<1;
+       }$
+
 ### Expressions: Boolean
 
 The next class of expressions to use the `binode` will be Boolean
-expressions.  As I haven't implemented precedence in the parser
-generator yet, we need different names for each precedence level used
-by expressions.  The outer most or lowest level precedence after
-conditional expressions are Boolean operators which form an `BoolExpr`
-out of `BTerm`s and `BFact`s.  As well as `or` `and`, and `not` we
-have `and then` and `or else` which only evaluate the second operand
-if the result would make a difference.
+expressions.  "`and then`" and "`or else`" are similar to `and` and `or`
+have same corresponding precendence.  The difference is that they don't
+evaluate the second expression if not necessary.
 
 ###### Binode types
        And,
@@ -2540,73 +3864,83 @@ if the result would make a difference.
        OrElse,
        Not,
 
-###### Grammar
+###### declare terminals
+       $LEFT or
+       $LEFT and
+       $LEFT not
 
-       $*exec
-       BoolExpr -> BoolExpr or BTerm ${ {
-                       struct binode *b = new(binode);
-                       b->op = Or;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
-               | BoolExpr or else BTerm ${ {
-                       struct binode *b = new(binode);
-                       b->op = OrElse;
-                       b->left = $<1;
-                       b->right = $<4;
-                       $0 = b;
-               } }$
-               | BTerm ${ $0 = $<1; }$
-
-       BTerm -> BTerm and BFact ${ {
-                       struct binode *b = new(binode);
-                       b->op = And;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
-               | BTerm and then BFact ${ {
-                       struct binode *b = new(binode);
-                       b->op = AndThen;
-                       b->left = $<1;
-                       b->right = $<4;
-                       $0 = b;
-               } }$
-               | BFact ${ $0 = $<1; }$
-
-       BFact -> not BFact ${ {
-                       struct binode *b = new(binode);
-                       b->op = Not;
-                       b->right = $<2;
-                       $0 = b;
-               } }$
-               ## other BFact
+###### expression grammar
+       | Expression or Expression ${ {
+               struct binode *b = new(binode);
+               b->op = Or;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
+       | Expression or else Expression ${ {
+               struct binode *b = new(binode);
+               b->op = OrElse;
+               b->left = $<1;
+               b->right = $<4;
+               $0 = b;
+       } }$
+
+       | Expression and Expression ${ {
+               struct binode *b = new(binode);
+               b->op = And;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
+       | Expression and then Expression ${ {
+               struct binode *b = new(binode);
+               b->op = AndThen;
+               b->left = $<1;
+               b->right = $<4;
+               $0 = b;
+       } }$
+
+       | not Expression ${ {
+               struct binode *b = new(binode);
+               b->op = Not;
+               b->right = $<2;
+               $0 = b;
+       } }$
 
 ###### print binode cases
        case And:
-               print_exec(b->left, -1, 0);
+               if (bracket) printf("(");
+               print_exec(b->left, -1, bracket);
                printf(" and ");
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
+               if (bracket) printf(")");
                break;
        case AndThen:
-               print_exec(b->left, -1, 0);
+               if (bracket) printf("(");
+               print_exec(b->left, -1, bracket);
                printf(" and then ");
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
+               if (bracket) printf(")");
                break;
        case Or:
-               print_exec(b->left, -1, 0);
+               if (bracket) printf("(");
+               print_exec(b->left, -1, bracket);
                printf(" or ");
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
+               if (bracket) printf(")");
                break;
        case OrElse:
-               print_exec(b->left, -1, 0);
+               if (bracket) printf("(");
+               print_exec(b->left, -1, bracket);
                printf(" or else ");
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
+               if (bracket) printf(")");
                break;
        case Not:
+               if (bracket) printf("(");
                printf("not ");
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
+               if (bracket) printf(")");
                break;
 
 ###### propagate binode cases
@@ -2616,8 +3950,8 @@ if the result would make a difference.
        case OrElse:
        case Not:
                /* both must be Tbool, result is Tbool */
-               propagate_types(b->left, c, ok, Tbool, 0);
-               propagate_types(b->right, c, ok, Tbool, 0);
+               propagate_types(b->left, c, perr, Tbool, 0);
+               propagate_types(b->right, c, perr, Tbool, 0);
                if (type && type != Tbool)
                        type_err(c, "error: %1 operation found where %2 expected", prog,
                                   Tbool, 0, type);
@@ -2625,39 +3959,38 @@ if the result would make a difference.
 
 ###### interp binode cases
        case And:
-               rv = interp_exec(b->left);
-               right = interp_exec(b->right);
+               rv = interp_exec(c, b->left, &rvtype);
+               right = interp_exec(c, b->right, &rtype);
                rv.bool = rv.bool && right.bool;
                break;
        case AndThen:
-               rv = interp_exec(b->left);
+               rv = interp_exec(c, b->left, &rvtype);
                if (rv.bool)
-                       rv = interp_exec(b->right);
+                       rv = interp_exec(c, b->right, NULL);
                break;
        case Or:
-               rv = interp_exec(b->left);
-               right = interp_exec(b->right);
+               rv = interp_exec(c, b->left, &rvtype);
+               right = interp_exec(c, b->right, &rtype);
                rv.bool = rv.bool || right.bool;
                break;
        case OrElse:
-               rv = interp_exec(b->left);
+               rv = interp_exec(c, b->left, &rvtype);
                if (!rv.bool)
-                       rv = interp_exec(b->right);
+                       rv = interp_exec(c, b->right, NULL);
                break;
        case Not:
-               rv = interp_exec(b->right);
+               rv = interp_exec(c, b->right, &rvtype);
                rv.bool = !rv.bool;
                break;
 
 ### Expressions: Comparison
 
-Of slightly higher precedence that Boolean expressions are
-Comparisons.
-A comparison takes arguments of any comparable type, but the two types must be
-the same.
+Of slightly higher precedence that Boolean expressions are Comparisons.
+A comparison takes arguments of any comparable type, but the two types
+must be the same.
 
 To simplify the parsing we introduce an `eop` which can record an
-expression operator.
+expression operator, and the `CMPop` non-terminal will match one of them.
 
 ###### ast
        struct eop {
@@ -2679,25 +4012,27 @@ expression operator.
        Eql,
        NEql,
 
-###### other BFact
-       | Expr CMPop Expr ${ {
+###### declare terminals
+       $LEFT < > <= >= == != CMPop
+
+###### expression grammar
+       | Expression CMPop Expression ${ {
                struct binode *b = new(binode);
                b->op = $2.op;
                b->left = $<1;
                b->right = $<3;
                $0 = b;
        } }$
-       | Expr ${ $0 = $<1; }$
 
 ###### Grammar
 
        $eop
-       CMPop ->   < ${ $0.op = Less; }$
-               |  > ${ $0.op = Gtr; }$
-               |  <= ${ $0.op = LessEq; }$
-               |  >= ${ $0.op = GtrEq; }$
-               |  == ${ $0.op = Eql; }$
-               |  != ${ $0.op = NEql; }$
+       CMPop ->  < ${ $0.op = Less; }$
+       |         > ${ $0.op = Gtr; }$
+       |         <= ${ $0.op = LessEq; }$
+       |         >= ${ $0.op = GtrEq; }$
+       |         == ${ $0.op = Eql; }$
+       |         != ${ $0.op = NEql; }$
 
 ###### print binode cases
 
@@ -2707,7 +4042,8 @@ expression operator.
        case GtrEq:
        case Eql:
        case NEql:
-               print_exec(b->left, -1, 0);
+               if (bracket) printf("(");
+               print_exec(b->left, -1, bracket);
                switch(b->op) {
                case Less:   printf(" < "); break;
                case LessEq: printf(" <= "); break;
@@ -2717,7 +4053,8 @@ expression operator.
                case NEql:   printf(" != "); break;
                default: abort();               // NOTEST
                }
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
+               if (bracket) printf(")");
                break;
 
 ###### propagate binode cases
@@ -2728,13 +4065,13 @@ expression operator.
        case Eql:
        case NEql:
                /* Both must match but not be labels, result is Tbool */
-               t = propagate_types(b->left, c, ok, NULL, Rnolabel);
+               t = propagate_types(b->left, c, perr, NULL, 0);
                if (t)
-                       propagate_types(b->right, c, ok, t, 0);
+                       propagate_types(b->right, c, perr, t, 0);
                else {
-                       t = propagate_types(b->right, c, ok, NULL, Rnolabel);
-                       if (t)
-                               t = propagate_types(b->left, c, ok, t, 0);
+                       t = propagate_types(b->right, c, perr, NULL, 0);        // UNTESTED
+                       if (t)  // UNTESTED
+                               t = propagate_types(b->left, c, perr, t, 0);    // UNTESTED
                }
                if (!type_compat(type, Tbool, 0))
                        type_err(c, "error: Comparison returns %1 but %2 expected", prog,
@@ -2750,10 +4087,10 @@ expression operator.
        case NEql:
        {
                int cmp;
-               left = interp_exec(b->left);
-               right = interp_exec(b->right);
-               cmp = value_cmp(left, right);
-               rv.type = Tbool;
+               left = interp_exec(c, b->left, &ltype);
+               right = interp_exec(c, b->right, &rtype);
+               cmp = value_cmp(ltype, rtype, &left, &right);
+               rvtype = Tbool;
                switch (b->op) {
                case Less:      rv.bool = cmp <  0; break;
                case LessEq:    rv.bool = cmp <= 0; break;
@@ -2761,79 +4098,100 @@ expression operator.
                case GtrEq:     rv.bool = cmp >= 0; break;
                case Eql:       rv.bool = cmp == 0; break;
                case NEql:      rv.bool = cmp != 0; break;
-               default: rv.bool = 0; break;    // NOTEST
+               default:        rv.bool = 0; break;     // NOTEST
                }
                break;
        }
 
-### Expressions: The rest
+### Expressions: Arithmetic etc.
 
-The remaining expressions with the highest precedence are arithmetic
-and string concatenation.  They are `Expr`, `Term`, and `Factor`.
-The `Factor` is where the `Value` and `Variable` that we already have
-are included.
+The remaining expressions with the highest precedence are arithmetic,
+string concatenation, string conversion, and testing.  String concatenation
+(`++`) has the same precedence as multiplication and division, but lower
+than the uniary.
+
+Testing comes in two forms.  A single question mark (`?`) is a uniary
+operator which converts come types into Boolean.  The general meaning is
+"is this a value value" and there will be more uses as the language
+develops.  A double questionmark (`??`) is a binary operator (Choose),
+with same precedence as multiplication, which returns the LHS if it
+tests successfully, else returns the RHS.
+
+String conversion is a temporary feature until I get a better type
+system.  `$` is a prefix operator which expects a string and returns
+a number.
 
 `+` and `-` are both infix and prefix operations (where they are
 absolute value and negation).  These have different operator names.
 
 We also have a 'Bracket' operator which records where parentheses were
-found.  This makes it easy to reproduce these when printing.  Once
-precedence is handled better I might be able to discard this.
+found.  This makes it easy to reproduce these when printing.  Possibly I
+should only insert brackets were needed for precedence.  Putting
+parentheses around an expression converts it into a Term,
 
 ###### Binode types
        Plus, Minus,
        Times, Divide, Rem,
-       Concat,
-       Absolute, Negate,
+       Concat, Choose,
+       Absolute, Negate, Test,
+       StringConv,
        Bracket,
 
-###### Grammar
+###### declare terminals
+       $LEFT + - Eop
+       $LEFT * / % ++ ?? Top
+       $LEFT Uop $ ?
+       $TERM ( )
 
-       $*exec
-       Expr -> Expr Eop Term ${ {
-                       struct binode *b = new(binode);
-                       b->op = $2.op;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
-               | Term ${ $0 = $<1; }$
-
-       Term -> Term Top Factor ${ {
-                       struct binode *b = new(binode);
-                       b->op = $2.op;
-                       b->left = $<1;
-                       b->right = $<3;
-                       $0 = b;
-               } }$
-               | Factor ${ $0 = $<1; }$
-
-       Factor -> ( Expression ) ${ {
-                       struct binode *b = new_pos(binode, $1);
-                       b->op = Bracket;
-                       b->right = $<2;
-                       $0 = b;
-               } }$
-               | Uop Factor ${ {
-                       struct binode *b = new(binode);
-                       b->op = $1.op;
-                       b->right = $<2;
-                       $0 = b;
-               } }$
-               | Value ${ $0 = $<1; }$
-               | Variable ${ $0 = $<1; }$
+###### expression grammar
+       | Expression Eop Expression ${ {
+               struct binode *b = new(binode);
+               b->op = $2.op;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
+
+       | Expression Top Expression ${ {
+               struct binode *b = new(binode);
+               b->op = $2.op;
+               b->left = $<1;
+               b->right = $<3;
+               $0 = b;
+       } }$
+
+       | Uop Expression ${ {
+               struct binode *b = new(binode);
+               b->op = $1.op;
+               b->right = $<2;
+               $0 = b;
+       } }$
+
+###### term grammar
+
+       | ( Expression ) ${ {
+               struct binode *b = new_pos(binode, $1);
+               b->op = Bracket;
+               b->right = $<2;
+               $0 = b;
+       } }$
+
+###### Grammar
 
        $eop
-       Eop ->    + ${ $0.op = Plus; }$
-               | - ${ $0.op = Minus; }$
+       Eop ->   + ${ $0.op = Plus; }$
+       |        - ${ $0.op = Minus; }$
 
-       Uop ->    + ${ $0.op = Absolute; }$
-               | - ${ $0.op = Negate; }$
+       Uop ->   + ${ $0.op = Absolute; }$
+       |        - ${ $0.op = Negate; }$
+       |        $ ${ $0.op = StringConv; }$
+       |        ? ${ $0.op = Test; }$
 
-       Top ->    * ${ $0.op = Times; }$
-               | / ${ $0.op = Divide; }$
-               | % ${ $0.op = Rem; }$
-               | ++ ${ $0.op = Concat; }$
+       Top ->   * ${ $0.op = Times; }$
+       |        / ${ $0.op = Divide; }$
+       |        % ${ $0.op = Rem; }$
+       |        ++ ${ $0.op = Concat; }$
+       |        ?? ${ $0.op = Choose; }$
 
 ###### print binode cases
        case Plus:
@@ -2842,7 +4200,9 @@ precedence is handled better I might be able to discard this.
        case Divide:
        case Concat:
        case Rem:
-               print_exec(b->left, indent, 0);
+       case Choose:
+               if (bracket) printf("(");
+               print_exec(b->left, indent, bracket);
                switch(b->op) {
                case Plus:   fputs(" + ", stdout); break;
                case Minus:  fputs(" - ", stdout); break;
@@ -2850,21 +4210,30 @@ precedence is handled better I might be able to discard this.
                case Divide: fputs(" / ", stdout); break;
                case Rem:    fputs(" % ", stdout); break;
                case Concat: fputs(" ++ ", stdout); break;
+               case Choose: fputs(" ?? ", stdout); break;
                default: abort();       // NOTEST
                }                       // NOTEST
-               print_exec(b->right, indent, 0);
+               print_exec(b->right, indent, bracket);
+               if (bracket) printf(")");
                break;
        case Absolute:
-               printf("+");
-               print_exec(b->right, indent, 0);
-               break;
        case Negate:
-               printf("-");
-               print_exec(b->right, indent, 0);
+       case StringConv:
+       case Test:
+               if (bracket) printf("(");
+               switch (b->op) {
+               case Absolute:   fputs("+", stdout); break;
+               case Negate:     fputs("-", stdout); break;
+               case StringConv: fputs("$", stdout); break;
+               case Test:       fputs("?", stdout); break;
+               default: abort();       // NOTEST
+               }                       // NOTEST
+               print_exec(b->right, indent, bracket);
+               if (bracket) printf(")");
                break;
        case Bracket:
                printf("(");
-               print_exec(b->right, indent, 0);
+               print_exec(b->right, indent, bracket);
                printf(")");
                break;
 
@@ -2879,8 +4248,8 @@ precedence is handled better I might be able to discard this.
        case Negate:
                /* as propagate_types ignores a NULL,
                 * unary ops fit here too */
-               propagate_types(b->left, c, ok, Tnum, 0);
-               propagate_types(b->right, c, ok, Tnum, 0);
+               propagate_types(b->left, c, perr, Tnum, 0);
+               propagate_types(b->right, c, perr, Tnum, 0);
                if (!type_compat(type, Tnum, 0))
                        type_err(c, "error: Arithmetic returns %1 but %2 expected", prog,
                                   Tnum, rules, type);
@@ -2888,69 +4257,133 @@ precedence is handled better I might be able to discard this.
 
        case Concat:
                /* both must be Tstr, result is Tstr */
-               propagate_types(b->left, c, ok, Tstr, 0);
-               propagate_types(b->right, c, ok, Tstr, 0);
+               propagate_types(b->left, c, perr, Tstr, 0);
+               propagate_types(b->right, c, perr, Tstr, 0);
                if (!type_compat(type, Tstr, 0))
                        type_err(c, "error: Concat returns %1 but %2 expected", prog,
                                   Tstr, rules, type);
                return Tstr;
 
+       case StringConv:
+               /* op must be string, result is number */
+               propagate_types(b->left, c, perr, Tstr, 0);
+               if (!type_compat(type, Tnum, 0))
+                       type_err(c,     // UNTESTED
+                         "error: Can only convert string to number, not %1",
+                               prog, type, 0, NULL);
+               return Tnum;
+
+       case Test:
+               /* LHS must support ->test, result is Tbool */
+               t = propagate_types(b->right, c, perr, NULL, 0);
+               if (!t || !t->test)
+                       type_err(c, "error: '?' requires a testable value, not %1",
+                                prog, t, 0, NULL);
+               return Tbool;
+
+       case Choose:
+               /* LHS and RHS must match and are returned. Must support
+                * ->test
+                */
+               t = propagate_types(b->left, c, perr, type, rules);
+               t = propagate_types(b->right, c, perr, t, rules);
+               if (t && t->test == NULL)
+                       type_err(c, "error: \"??\" requires a testable value, not %1",
+                                prog, t, 0, NULL);
+               return t;
+
        case Bracket:
-               return propagate_types(b->right, c, ok, type, 0);
+               return propagate_types(b->right, c, perr, type, 0);
 
 ###### interp binode cases
 
        case Plus:
-               rv = interp_exec(b->left);
-               right = interp_exec(b->right);
+               rv = interp_exec(c, b->left, &rvtype);
+               right = interp_exec(c, b->right, &rtype);
                mpq_add(rv.num, rv.num, right.num);
                break;
        case Minus:
-               rv = interp_exec(b->left);
-               right = interp_exec(b->right);
+               rv = interp_exec(c, b->left, &rvtype);
+               right = interp_exec(c, b->right, &rtype);
                mpq_sub(rv.num, rv.num, right.num);
                break;
        case Times:
-               rv = interp_exec(b->left);
-               right = interp_exec(b->right);
+               rv = interp_exec(c, b->left, &rvtype);
+               right = interp_exec(c, b->right, &rtype);
                mpq_mul(rv.num, rv.num, right.num);
                break;
        case Divide:
-               rv = interp_exec(b->left);
-               right = interp_exec(b->right);
+               rv = interp_exec(c, b->left, &rvtype);
+               right = interp_exec(c, b->right, &rtype);
                mpq_div(rv.num, rv.num, right.num);
                break;
        case Rem: {
                mpz_t l, r, rem;
 
-               left = interp_exec(b->left);
-               right = interp_exec(b->right);
+               left = interp_exec(c, b->left, &ltype);
+               right = interp_exec(c, b->right, &rtype);
                mpz_init(l); mpz_init(r); mpz_init(rem);
                mpz_tdiv_q(l, mpq_numref(left.num), mpq_denref(left.num));
                mpz_tdiv_q(r, mpq_numref(right.num), mpq_denref(right.num));
                mpz_tdiv_r(rem, l, r);
-               rv = val_init(Tnum);
+               val_init(Tnum, &rv);
                mpq_set_z(rv.num, rem);
                mpz_clear(r); mpz_clear(l); mpz_clear(rem);
+               rvtype = ltype;
                break;
        }
        case Negate:
-               rv = interp_exec(b->right);
+               rv = interp_exec(c, b->right, &rvtype);
                mpq_neg(rv.num, rv.num);
                break;
        case Absolute:
-               rv = interp_exec(b->right);
+               rv = interp_exec(c, b->right, &rvtype);
                mpq_abs(rv.num, rv.num);
                break;
        case Bracket:
-               rv = interp_exec(b->right);
+               rv = interp_exec(c, b->right, &rvtype);
                break;
        case Concat:
-               left = interp_exec(b->left);
-               right = interp_exec(b->right);
-               rv.type = Tstr;
+               left = interp_exec(c, b->left, &ltype);
+               right = interp_exec(c, b->right, &rtype);
+               rvtype = Tstr;
                rv.str = text_join(left.str, right.str);
                break;
+       case StringConv:
+               right = interp_exec(c, b->right, &rvtype);
+               rtype = Tstr;
+               rvtype = Tnum;
+
+               struct text tx = right.str;
+               char tail[3];
+               int neg = 0;
+               if (tx.txt[0] == '-') {
+                       neg = 1;        // UNTESTED
+                       tx.txt++;       // UNTESTED
+                       tx.len--;       // UNTESTED
+               }
+               if (number_parse(rv.num, tail, tx) == 0)
+                       mpq_init(rv.num);       // UNTESTED
+               else if (neg)
+                       mpq_neg(rv.num, rv.num);        // UNTESTED
+               if (tail[0])
+                       printf("Unsupported suffix: %.*s\n", tx.len, tx.txt);   // UNTESTED
+
+               break;
+       case Test:
+               right = interp_exec(c, b->right, &rtype);
+               rvtype = Tbool;
+               rv.bool = !!rtype->test(rtype, &right);
+               break;
+       case Choose:
+               left = interp_exec(c, b->left, &ltype);
+               if (ltype->test(ltype, &left)) {
+                       rv = left;
+                       rvtype = ltype;
+                       ltype = NULL;
+               } else
+                       rv = interp_exec(c, b->right, &rvtype);
+               break;
 
 ###### value functions
 
@@ -2992,7 +4425,7 @@ confusion, so I'm not set on it yet.
 
 A simple statement list needs no extra syntax.  A complex statement
 list has two syntactic forms.  It can be enclosed in braces (much like
-C blocks), or it can be introduced by a colon and continue until an
+C blocks), or it can be introduced by an indent and continue until an
 unindented newline (much like Python blocks).  With this extra syntax
 it is referred to as a block.
 
@@ -3017,81 +4450,105 @@ which does nothing and is represented as a `NULL` pointer in a `Block`
 list.  Other stand-alone statements will follow once the infrastructure
 is in-place.
 
+As many statements will use binodes, we declare a binode pointer 'b' in
+the common header for all reductions to use.
+
+###### Parser: reduce
+       struct binode *b;
+
 ###### Binode types
        Block,
 
 ###### Grammar
 
-       $void
-       Newlines -> NEWLINE
-               | Newlines NEWLINE
+       $TERM { } ;
 
        $*binode
-       Block -> Open Statementlist Close ${ $0 = $<2; }$
-               | Open SimpleStatements } ${ $0 = reorder_bilist($<2); }$
-               | : SimpleStatements ${ $0 = reorder_bilist($<2); }$
-               | : Statementlist  ${ $0 = $<2; }$
-
-       Statementlist -> ComplexStatements ${ $0 = reorder_bilist($<1); }$
+       Block -> { IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
+       |        { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
+       |        SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
+       |        IN OptNL Statementlist OUT ${ $0 = $<Sl; }$
+
+       OpenBlock -> OpenScope { IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
+       |        OpenScope { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        OpenScope SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
+       |        OpenScope SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
+       |        IN OpenScope OptNL Statementlist OUT ${ $0 = $<Sl; }$
+
+       UseBlock -> { OpenScope IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
+       |        { OpenScope SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        IN OpenScope OptNL Statementlist OUT ${ $0 = $<Sl; }$
+
+       ColonBlock -> { IN OptNL Statementlist OUT OptNL } ${ $0 = $<Sl; }$
+       |        { SimpleStatements } ${ $0 = reorder_bilist($<SS); }$
+       |        : SimpleStatements ; ${ $0 = reorder_bilist($<SS); }$
+       |        : SimpleStatements EOL ${ $0 = reorder_bilist($<SS); }$
+       |        : IN OptNL Statementlist OUT ${ $0 = $<Sl; }$
+
+       Statementlist -> ComplexStatements ${ $0 = reorder_bilist($<CS); }$
 
        ComplexStatements -> ComplexStatements ComplexStatement ${
-                       if ($2 == NULL) {
-                               $0 = $<1;
-                       } else {
-                               $0 = new(binode);
-                               $0->op = Block;
-                               $0->left = $<1;
-                               $0->right = $<2;
-                       }
-               }$
-               | ComplexStatement ${
-                       if ($1 == NULL) {
-                               $0 = NULL;
-                       } else {
-                               $0 = new(binode);
-                               $0->op = Block;
-                               $0->left = NULL;
-                               $0->right = $<1;
-                       }
-               }$
-
-       $*exec
-       ComplexStatement -> SimpleStatements NEWLINE ${
-                       $0 = reorder_bilist($<1);
-                       }$
-               | Newlines ${ $0 = NULL; }$
-               ## ComplexStatement Grammar
-
-       $*binode
-       SimpleStatements -> SimpleStatements ; SimpleStatement ${
+               if ($2 == NULL) {
+                       $0 = $<1;
+               } else {
                        $0 = new(binode);
                        $0->op = Block;
                        $0->left = $<1;
-                       $0->right = $<3;
-                       }$
-               | SimpleStatement ${
+                       $0->right = $<2;
+               }
+       }$
+       | ComplexStatement ${
+               if ($1 == NULL) {
+                       $0 = NULL;
+               } else {
                        $0 = new(binode);
                        $0->op = Block;
                        $0->left = NULL;
                        $0->right = $<1;
-                       }$
-               | SimpleStatements ; ${ $0 = $<1; }$
+               }
+       }$
+
+       $*exec
+       ComplexStatement -> SimpleStatements Newlines ${
+               $0 = reorder_bilist($<SS);
+       }$
+       |  SimpleStatements ; Newlines ${
+               $0 = reorder_bilist($<SS);
+       }$
+       ## ComplexStatement Grammar
+
+       $*binode
+       SimpleStatements -> SimpleStatements ; SimpleStatement ${
+               $0 = new(binode);
+               $0->op = Block;
+               $0->left = $<1;
+               $0->right = $<3;
+       }$
+       | SimpleStatement ${
+               $0 = new(binode);
+               $0->op = Block;
+               $0->left = NULL;
+               $0->right = $<1;
+       }$
 
+       $TERM pass
+       $*exec
        SimpleStatement -> pass ${ $0 = NULL; }$
-               | ERROR ${ tok_err(c, "Syntax error in statement", &$1); }$
-               ## SimpleStatement Grammar
+       | ERROR ${ tok_err(c, "Syntax error in statement", &$1); }$
+       ## SimpleStatement Grammar
 
 ###### print binode cases
        case Block:
                if (indent < 0) {
                        // simple statement
-                       if (b->left == NULL)
-                               printf("pass");
+                       if (b->left == NULL)    // UNTESTED
+                               printf("pass"); // UNTESTED
                        else
-                               print_exec(b->left, indent, 0);
-                       if (b->right) {
-                               printf("; ");
-                               print_exec(b->right, indent, 0);
+                               print_exec(b->left, indent, bracket);   // UNTESTED
+                       if (b->right) { // UNTESTED
+                               printf("; ");   // UNTESTED
+                               print_exec(b->right, indent, bracket);  // UNTESTED
                        }
                } else {
                        // block, one per line
@@ -3117,14 +4574,19 @@ is in-place.
                struct binode *e;
 
                for (e = b; e; e = cast(binode, e->right)) {
-                       t = propagate_types(e->left, c, ok, NULL, rules);
-                       if ((rules & Rboolok) && t == Tbool)
+                       t = propagate_types(e->left, c, perr, NULL, rules);
+                       if ((rules & Rboolok) && (t == Tbool || t == Tnone))
                                t = NULL;
-                       if (t && t != Tnone && t != Tbool) {
+                       if (t == Tnone && e->right)
+                               /* Only the final statement *must* return a value
+                                * when not Rboolok
+                                */
+                               t = NULL;
+                       if (t) {
                                if (!type)
                                        type = t;
                                else if (t != type)
-                                       type_err(c, "error: expected %1%r, found %2",
+                                       type_err(c, "error: expected %1, found %2",
                                                 e->left, type, rules, t);
                        }
                }
@@ -3133,10 +4595,10 @@ is in-place.
 
 ###### interp binode cases
        case Block:
-               while (rv.type == Tnone &&
+               while (rvtype == Tnone &&
                       b) {
                        if (b->left)
-                               rv = interp_exec(b->left);
+                               rv = interp_exec(c, b->left, &rvtype);
                        b = cast(binode, b->right);
                }
                break;
@@ -3147,59 +4609,47 @@ is in-place.
 expressions and prints the values separated by spaces and terminated
 by a newline.  No control of formatting is possible.
 
-`print` faces the same list-ordering issue as blocks, and uses the
-same solution.
+`print` uses `ExpressionList` to collect the expressions and stores them
+on the left side of a `Print` binode unlessthere is a trailing comma
+when the list is stored on the `right` side and no trailing newline is
+printed.
 
 ###### Binode types
        Print,
 
+##### declare terminals
+       $TERM print
+
 ###### SimpleStatement Grammar
 
        | print ExpressionList ${
-               $0 = reorder_bilist($<2);
-       }$
-       | print ExpressionList , ${
-               $0 = new(binode);
-               $0->op = Print;
-               $0->right = NULL;
-               $0->left = $<2;
-               $0 = reorder_bilist($0);
+               $0 = b = new_pos(binode, $1);
+               b->op = Print;
+               b->right = NULL;
+               b->left = reorder_bilist($<EL);
        }$
+       | print ExpressionList , ${ {
+               $0 = b = new_pos(binode, $1);
+               b->op = Print;
+               b->right = reorder_bilist($<EL);
+               b->left = NULL;
+       } }$
        | print ${
-               $0 = new(binode);
-               $0->op = Print;
-               $0->right = NULL;
+               $0 = b = new_pos(binode, $1);
+               b->op = Print;
+               b->left = NULL;
+               b->right = NULL;
        }$
 
-###### Grammar
-
-       $*binode
-       ExpressionList -> ExpressionList , Expression ${
-               $0 = new(binode);
-               $0->op = Print;
-               $0->left = $<1;
-               $0->right = $<3;
-               }$
-               | Expression ${
-                       $0 = new(binode);
-                       $0->op = Print;
-                       $0->left = NULL;
-                       $0->right = $<1;
-               }$
-
 ###### print binode cases
 
        case Print:
                do_indent(indent, "print");
-               while (b) {
-                       if (b->left) {
-                               printf(" ");
-                               print_exec(b->left, -1, 0);
-                               if (b->right)
-                                       printf(",");
-                       }
-                       b = cast(binode, b->right);
-               }
+               if (b->right) {
+                       print_exec(b->right, -1, bracket);
+                       printf(",");
+               } else
+                       print_exec(b->left, -1, bracket);
                if (indent >= 0)
                        printf("\n");
                break;
@@ -3208,81 +4658,88 @@ same solution.
 
        case Print:
                /* don't care but all must be consistent */
-               propagate_types(b->left, c, ok, NULL, Rnolabel);
-               propagate_types(b->right, c, ok, NULL, Rnolabel);
+               if (b->left)
+                       b = cast(binode, b->left);
+               else
+                       b = cast(binode, b->right);
+               while (b) {
+                       propagate_types(b->left, c, perr, NULL, 0);
+                       b = cast(binode, b->right);
+               }
                break;
 
 ###### interp binode cases
 
        case Print:
-       {
-               char sep = 0;
-               int eol = 1;
-               for ( ; b; b = cast(binode, b->right))
-                       if (b->left) {
-                               if (sep)
-                                       putchar(sep);
-                               left = interp_exec(b->left);
-                               print_value(left);
-                               free_value(left);
-                               if (b->right)
-                                       sep = ' ';
-                       } else if (sep)
-                               eol = 0;
-               left.type = Tnone;
-               if (eol)
+       {
+               struct binode *b2 = cast(binode, b->left);
+               if (!b2)
+                       b2 = cast(binode, b->right);
+               for (; b2; b2 = cast(binode, b2->right)) {
+                       left = interp_exec(c, b2->left, &ltype);
+                       print_value(ltype, &left, stdout);
+                       free_value(ltype, &left);
+                       if (b2->right)
+                               putchar(' ');
+               }
+               if (b->right == NULL)
                        printf("\n");
+               ltype = Tnone;
                break;
        }
 
 ###### Assignment statement
 
 An assignment will assign a value to a variable, providing it hasn't
-be declared as a constant.  The analysis phase ensures that the type
+been declared as a constant.  The analysis phase ensures that the type
 will be correct so the interpreter just needs to perform the
 calculation.  There is a form of assignment which declares a new
-variable as well as assigning a value.  If a name is assigned before
-it is declared, and error will be raised as the name is created as
-`Tlabel` and it is illegal to assign to such names.
+variable as well as assigning a value.  If a name is used before
+it is declared, it is assumed to be a global constant which are allowed to
+be declared at any time.
 
 ###### Binode types
        Assign,
        Declare,
 
+###### declare terminals
+       $TERM =
+
 ###### SimpleStatement Grammar
-       | Variable = Expression ${
-                       $0 = new(binode);
-                       $0->op = Assign;
-                       $0->left = $<1;
-                       $0->right = $<3;
-               }$
+       | Term = Expression ${
+               $0 = b= new(binode);
+               b->op = Assign;
+               b->left = $<1;
+               b->right = $<3;
+       }$
        | VariableDecl = Expression ${
-                       $0 = new(binode);
-                       $0->op = Declare;
-                       $0->left = $<1;
-                       $0->right =$<3;
-               }$
+               $0 = b= new(binode);
+               b->op = Declare;
+               b->left = $<1;
+               b->right =$<3;
+       }$
 
        | VariableDecl ${
-                       if ($1->var->where_set == NULL) {
-                               type_err(c,
-                                        "Variable declared with no type or value: %v",
-                                        $1, NULL, 0, NULL);
-                       } else {
-                               $0 = new(binode);
-                               $0->op = Declare;
-                               $0->left = $<1;
-                               $0->right = NULL;
-                       }
-               }$
+               if ($1->var->where_set == NULL) {
+                       type_err(c,
+                                "Variable declared with no type or value: %v",
+                                $1, NULL, 0, NULL);
+                       free_var($1);
+               } else {
+                       $0 = b = new(binode);
+                       b->op = Declare;
+                       b->left = $<1;
+                       b->right = NULL;
+               }
+       }$
 
 ###### print binode cases
 
        case Assign:
                do_indent(indent, "");
-               print_exec(b->left, indent, 0);
+               print_exec(b->left, -1, bracket);
                printf(" = ");
-               print_exec(b->right, indent, 0);
+               print_exec(b->right, -1, bracket);
                if (indent >= 0)
                        printf("\n");
                break;
@@ -3291,25 +4748,23 @@ it is declared, and error will be raised as the name is created as
                {
                struct variable *v = cast(var, b->left)->var;
                do_indent(indent, "");
-               print_exec(b->left, indent, 0);
+               print_exec(b->left, -1, bracket);
                if (cast(var, b->left)->var->constant) {
-                       if (v->where_decl == v->where_set) {
-                               printf("::");
-                               type_print(v->val.type, stdout);
+                       printf("::");
+                       if (v->explicit_type) {
+                               type_print(v->type, stdout);
                                printf(" ");
-                       } else
-                               printf(" ::");
+                       }
                } else {
-                       if (v->where_decl == v->where_set) {
-                               printf(":");
-                               type_print(v->val.type, stdout);
+                       printf(":");
+                       if (v->explicit_type) {
+                               type_print(v->type, stdout);
                                printf(" ");
-                       } else
-                               printf(" :");
+                       }
                }
                if (b->right) {
                        printf("= ");
-                       print_exec(b->right, indent, 0);
+                       print_exec(b->right, -1, bracket);
                }
                if (indent >= 0)
                        printf("\n");
@@ -3325,23 +4780,23 @@ it is declared, and error will be raised as the name is created as
                 * For Assign, left must not be constant.
                 * result is Tnone
                 */
-               t = propagate_types(b->left, c, ok, NULL,
-                                   Rnolabel | (b->op == Assign ? Rnoconstant : 0));
+               t = propagate_types(b->left, c, perr, NULL,
+                                   (b->op == Assign ? Rnoconstant : 0));
                if (!b->right)
                        return Tnone;
 
                if (t) {
-                       if (propagate_types(b->right, c, ok, t, 0) != t)
+                       if (propagate_types(b->right, c, perr, t, 0) != t)
                                if (b->left->type == Xvar)
                                        type_err(c, "info: variable '%v' was set as %1 here.",
                                                 cast(var, b->left)->var->where_set, t, rules, NULL);
                } else {
-                       t = propagate_types(b->right, c, ok, NULL, Rnolabel);
+                       t = propagate_types(b->right, c, perr, NULL, 0);
                        if (t)
-                               propagate_types(b->left, c, ok, t,
+                               propagate_types(b->left, c, perr, t,
                                                (b->op == Assign ? Rnoconstant : 0));
                }
-               if (t && t->dup == NULL)
+               if (t && t->dup == NULL && !(*perr & Emaycopy))
                        type_err(c, "error: cannot assign value of type %1", b, t, 0, NULL);
                return Tnone;
 
@@ -3350,61 +4805,52 @@ it is declared, and error will be raised as the name is created as
 ###### interp binode cases
 
        case Assign:
-               lleft = linterp_exec(b->left);
-               right = interp_exec(b->right);
-               if (lleft) {
-                       free_value(*lleft);
-                       *lleft = right;
-               } else
-                       free_value(right);      // NOTEST
-               right.type = NULL;
+               lleft = linterp_exec(c, b->left, &ltype);
+               if (lleft)
+                       dinterp_exec(c, b->right, lleft, ltype, 1);
+               ltype = Tnone;
                break;
 
        case Declare:
        {
                struct variable *v = cast(var, b->left)->var;
-               if (v->merged)
-                       v = v->merged;
+               struct value *val;
+               v = v->merged;
+               val = var_value(c, v);
+               if (v->type->prepare_type)
+                       v->type->prepare_type(c, v->type, 0);
                if (b->right)
-                       right = interp_exec(b->right);
+                       dinterp_exec(c, b->right, val, v->type, 0);
                else
-                       right = val_init(v->val.type);
-               free_value(v->val);
-               v->val = right;
-               right.type = NULL;
+                       val_init(v->type, val);
                break;
        }
 
 ### The `use` statement
 
-The `use` statement is the last "simple" statement.  It is needed when
-the condition in a conditional statement is a block.  `use` works much
-like `return` in C, but only completes the `condition`, not the whole
-function.
+The `use` statement is the last "simple" statement.  It is needed when a
+statement block can return a value.  This includes the body of a
+function which has a return type, and the "condition" code blocks in
+`if`, `while`, and `switch` statements.
 
 ###### Binode types
        Use,
 
+###### declare terminals
+       $TERM use
+
 ###### SimpleStatement Grammar
        | use Expression ${
-               $0 = new_pos(binode, $1);
-               $0->op = Use;
-               $0->right = $<2;
-               if ($0->right->type == Xvar) {
-                       struct var *v = cast(var, $0->right);
-                       if (v->var->val.type == Tnone) {
-                               /* Convert this to a label */
-                               v->var->val = val_prepare(Tlabel);
-                               v->var->val.label = &v->var->val;
-                       }
-               }
+               $0 = b = new_pos(binode, $1);
+               b->op = Use;
+               b->right = $<2;
        }$
 
 ###### print binode cases
 
        case Use:
                do_indent(indent, "use ");
-               print_exec(b->right, -1, 0);
+               print_exec(b->right, -1, bracket);
                if (indent >= 0)
                        printf("\n");
                break;
@@ -3413,12 +4859,12 @@ function.
 
        case Use:
                /* result matches value */
-               return propagate_types(b->right, c, ok, type, 0);
+               return propagate_types(b->right, c, perr, type, 0);
 
 ###### interp binode cases
 
        case Use:
-               rv = interp_exec(b->right);
+               rv = interp_exec(c, b->right, &rvtype);
                break;
 
 ### The Conditional Statement
@@ -3483,7 +4929,15 @@ the type of the `whilepart` code block is the reason for the
 `Rboolok` flag which is passed to `propagate_types()`.
 
 The `cond_statement` cannot fit into a `binode` so a new `exec` is
-defined.
+defined.  As there are two scopes which cover multiple parts - one for
+the whole statement and one for "while" and "do" - and as we will use
+the 'struct exec' to track scopes, we actually need two new types of
+exec.  One is a `binode` for the looping part, the rest is the
+`cond_statement`.  The `cond_statement` will use an auxilliary `struct
+casepart` to track a list of case parts.
+
+###### Binode types
+       Loop
 
 ###### exec type
        Xcond_statement,
@@ -3496,7 +4950,8 @@ defined.
        };
        struct cond_statement {
                struct exec;
-               struct exec *forpart, *condpart, *dopart, *thenpart, *elsepart;
+               struct exec *forpart, *condpart, *thenpart, *elsepart;
+               struct binode *looppart;
                struct casepart *casepart;
        };
 
@@ -3520,7 +4975,7 @@ defined.
                        return;
                free_exec(s->forpart);
                free_exec(s->condpart);
-               free_exec(s->dopart);
+               free_exec(s->looppart);
                free_exec(s->thenpart);
                free_exec(s->elsepart);
                free_casepart(s->casepart);
@@ -3533,158 +4988,182 @@ defined.
 ###### ComplexStatement Grammar
        | CondStatement ${ $0 = $<1; }$
 
+###### declare terminals
+       $TERM for then while do
+       $TERM else
+       $TERM switch case
+
 ###### Grammar
 
        $*cond_statement
-       // both ForThen and Whilepart open scopes, and CondSuffix only
-       // closes one - so in the first branch here we have another to close.
-       CondStatement -> forPart ThenPart WhilePart CondSuffix ${
-                       $0 = $<4;
-                       $0->forpart = $<1;
-                       $0->thenpart = $<2;
-                       $0->condpart = $3.condpart; $3.condpart = NULL;
-                       $0->dopart = $3.dopart; $3.dopart = NULL;
-                       var_block_close(c, CloseSequential);
-                       }$
-               |  forPart WhilePart CondSuffix ${
-                       $0 = $<3;
-                       $0->forpart = $<1;
-                       $0->thenpart = NULL;
-                       $0->condpart = $2.condpart; $2.condpart = NULL;
-                       $0->dopart = $2.dopart; $2.dopart = NULL;
-                       var_block_close(c, CloseSequential);
-                       }$
-               | whilePart CondSuffix ${
-                       $0 = $<2;
-                       $0->condpart = $1.condpart; $1.condpart = NULL;
-                       $0->dopart = $1.dopart; $1.dopart = NULL;
-                       }$
-               | switchPart CondSuffix ${
-                       $0 = $<2;
-                       $0->condpart = $<1;
-                       }$
-               | ifPart IfSuffix ${
-                       $0 = $<2;
-                       $0->condpart = $1.condpart; $1.condpart = NULL;
-                       $0->thenpart = $1.thenpart; $1.thenpart = NULL;
-                       // This is where we close an "if" statement
-                       var_block_close(c, CloseSequential);
-                       }$
+       // A CondStatement must end with EOL, as does CondSuffix and
+       // IfSuffix.
+       // ForPart, ThenPart, SwitchPart, CasePart are non-empty and
+       // may or may not end with EOL
+       // WhilePart and IfPart include an appropriate Suffix
+
+       // ForPart, SwitchPart, and IfPart open scopes, o we have to close
+       // them.  WhilePart opens and closes its own scope.
+       CondStatement -> ForPart OptNL ThenPart OptNL WhilePart CondSuffix ${
+               $0 = $<CS;
+               $0->forpart = $<FP;
+               $0->thenpart = $<TP;
+               $0->looppart = $<WP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | ForPart OptNL WhilePart CondSuffix ${
+               $0 = $<CS;
+               $0->forpart = $<FP;
+               $0->looppart = $<WP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | WhilePart CondSuffix ${
+               $0 = $<CS;
+               $0->looppart = $<WP;
+       }$
+       | SwitchPart OptNL CasePart CondSuffix ${
+               $0 = $<CS;
+               $0->condpart = $<SP;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | SwitchPart : IN OptNL CasePart CondSuffix OUT Newlines ${
+               $0 = $<CS;
+               $0->condpart = $<SP;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | IfPart IfSuffix ${
+               $0 = $<IS;
+               $0->condpart = $IP.condpart; $IP.condpart = NULL;
+               $0->thenpart = $IP.thenpart; $IP.thenpart = NULL;
+               // This is where we close an "if" statement
+               var_block_close(c, CloseSequential, $0);
+       }$
 
        CondSuffix -> IfSuffix ${
-                       $0 = $<1;
-                       // This is where we close scope of the whole
-                       // "for" or "while" statement
-                       var_block_close(c, CloseSequential);
-               }$
-               | CasePart CondSuffix ${
-                       $0 = $<2;
-                       $1->next = $0->casepart;
-                       $0->casepart = $<1;
-               }$
+               $0 = $<1;
+       }$
+       | Newlines CasePart CondSuffix ${
+               $0 = $<CS;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+       }$
+       | CasePart CondSuffix ${
+               $0 = $<CS;
+               $CP->next = $0->casepart;
+               $0->casepart = $<CP;
+       }$
 
-       $void
-       Case -> case
-               | NEWLINE Case
-       $*casepart
-       CasePart -> Case Expression OpenScope Block ${
-                       $0 = calloc(1,sizeof(struct casepart));
-                       $0->value = $<2;
-                       $0->action = $<4;
-                       var_block_close(c, CloseParallel);
-               }$
+       IfSuffix -> Newlines ${ $0 = new(cond_statement); }$
+       | Newlines ElsePart ${ $0 = $<EP; }$
+       | ElsePart ${$0 = $<EP; }$
 
-       $*cond_statement
-       IfSuffix ->  ${ $0 = new(cond_statement); }$
-               | NEWLINE IfSuffix ${ $0 = $<2; }$
-               | else OpenScope Block ${
-                       $0 = new(cond_statement);
-                       $0->elsepart = $<3;
-                       var_block_close(c, CloseElse);
-               }$
-               | else OpenScope CondStatement ${
-                       $0 = new(cond_statement);
-                       $0->elsepart = $<3;
-                       var_block_close(c, CloseElse);
-               }$
+       ElsePart -> else OpenBlock Newlines ${
+               $0 = new(cond_statement);
+               $0->elsepart = $<OB;
+               var_block_close(c, CloseElse, $0->elsepart);
+       }$
+       | else OpenScope CondStatement ${
+               $0 = new(cond_statement);
+               $0->elsepart = $<CS;
+               var_block_close(c, CloseElse, $0->elsepart);
+       }$
+
+       $*casepart
+       CasePart -> case Expression OpenScope ColonBlock ${
+               $0 = calloc(1,sizeof(struct casepart));
+               $0->value = $<Ex;
+               $0->action = $<Bl;
+               var_block_close(c, CloseParallel, $0->action);
+       }$
 
-       $void
-       Then -> then
-               | NEWLINE Then
-       While -> while
-               | NEWLINE While
-       Do -> do
-               | NEWLINE Do
        $*exec
-       // These scopes are closed in CondSuffix
-       forPart -> for OpenScope SimpleStatements ${
-                       $0 = reorder_bilist($<3);
-               }$
-               |  for OpenScope Block ${
-                       $0 = $<3;
-               }$
-
-       ThenPart -> Then OpenScope SimpleStatements ${
-                       $0 = reorder_bilist($<3);
-                       var_block_close(c, CloseSequential);
-               }$
-               |  Then OpenScope Block ${
-                       $0 = $<3;
-                       var_block_close(c, CloseSequential);
-               }$
-
-       // This scope is closed in CondSuffix
-       WhileHead -> While OpenScope Block ${
-               $0 = $<3;
-               }$
-       whileHead -> while OpenScope Block ${
-               $0 = $<3;
-               }$
+       // These scopes are closed in CondStatement
+       ForPart -> for OpenBlock ${
+               $0 = $<Bl;
+       }$
+
+       ThenPart -> then OpenBlock ${
+               $0 = $<OB;
+               var_block_close(c, CloseSequential, $0);
+       }$
+
+       $*binode
+       // This scope is closed in CondStatement
+       WhilePart -> while UseBlock OptNL do OpenBlock ${
+               $0 = new(binode);
+               $0->op = Loop;
+               $0->left = $<UB;
+               $0->right = $<OB;
+               var_block_close(c, CloseSequential, $0->right);
+               var_block_close(c, CloseSequential, $0);
+       }$
+       | while OpenScope Expression OpenScope ColonBlock ${
+               $0 = new(binode);
+               $0->op = Loop;
+               $0->left = $<Exp;
+               $0->right = $<CB;
+               var_block_close(c, CloseSequential, $0->right);
+               var_block_close(c, CloseSequential, $0);
+       }$
 
        $cond_statement
-       // This scope is closed in CondSuffix
-       whilePart -> while OpenScope Expression Block ${
-                       $0.type = Xcond_statement;
-                       $0.condpart = $<3;
-                       $0.dopart = $<4;
-               }$
-               | whileHead Do Block ${
-                       $0.type = Xcond_statement;
-                       $0.condpart = $<1;
-                       $0.dopart = $<3;
-               }$
-       WhilePart -> While OpenScope Expression Block ${
-                       $0.type = Xcond_statement;
-                       $0.condpart = $<3;
-                       $0.dopart = $<4;
-               }$
-               | WhileHead Do Block ${
-                       $0.type = Xcond_statement;
-                       $0.condpart = $<1;
-                       $0.dopart = $<3;
-               }$
-
-       ifPart -> if OpenScope Expression OpenScope Block ${
-                       $0.type = Xcond_statement;
-                       $0.condpart = $<3;
-                       $0.thenpart = $<5;
-                       var_block_close(c, CloseParallel);
-               }$
-               | if OpenScope Block Then OpenScope Block ${
-                       $0.type = Xcond_statement;
-                       $0.condpart = $<3;
-                       $0.thenpart = $<6;
-                       var_block_close(c, CloseParallel);
-               }$
+       IfPart -> if UseBlock OptNL then OpenBlock ${
+               $0.condpart = $<UB;
+               $0.thenpart = $<OB;
+               var_block_close(c, CloseParallel, $0.thenpart);
+       }$
+       | if OpenScope Expression OpenScope ColonBlock ${
+               $0.condpart = $<Ex;
+               $0.thenpart = $<CB;
+               var_block_close(c, CloseParallel, $0.thenpart);
+       }$
+       | if OpenScope Expression OpenScope OptNL then Block ${
+               $0.condpart = $<Ex;
+               $0.thenpart = $<Bl;
+               var_block_close(c, CloseParallel, $0.thenpart);
+       }$
 
        $*exec
-       // This scope is closed in CondSuffix
-       switchPart -> switch OpenScope Expression ${
-                       $0 = $<3;
-               }$
-               | switch OpenScope Block ${
-                       $0 = $<3;
-               }$
+       // This scope is closed in CondStatement
+       SwitchPart -> switch OpenScope Expression ${
+               $0 = $<Ex;
+       }$
+       | switch UseBlock ${
+               $0 = $<Bl;
+       }$
+
+###### print binode cases
+       case Loop:
+               if (b->left && b->left->type == Xbinode &&
+                   cast(binode, b->left)->op == Block) {
+                       if (bracket)
+                               do_indent(indent, "while {\n");
+                       else
+                               do_indent(indent, "while\n");
+                       print_exec(b->left, indent+1, bracket);
+                       if (bracket)
+                               do_indent(indent, "} do {\n");
+                       else
+                               do_indent(indent, "do\n");
+                       print_exec(b->right, indent+1, bracket);
+                       if (bracket)
+                               do_indent(indent, "}\n");
+               } else {
+                       do_indent(indent, "while ");
+                       print_exec(b->left, 0, bracket);
+                       if (bracket)
+                               printf(" {\n");
+                       else
+                               printf(":\n");
+                       print_exec(b->right, indent+1, bracket);
+                       if (bracket)
+                               do_indent(indent, "}\n");
+               }
+               break;
 
 ###### print exec cases
 
@@ -3694,44 +5173,19 @@ defined.
                struct casepart *cp;
                if (cs->forpart) {
                        do_indent(indent, "for");
-                       if (bracket) printf(" {\n"); else printf(":\n");
+                       if (bracket) printf(" {\n"); else printf("\n");
                        print_exec(cs->forpart, indent+1, bracket);
                        if (cs->thenpart) {
                                if (bracket)
                                        do_indent(indent, "} then {\n");
                                else
-                                       do_indent(indent, "then:\n");
+                                       do_indent(indent, "then\n");
                                print_exec(cs->thenpart, indent+1, bracket);
                        }
                        if (bracket) do_indent(indent, "}\n");
                }
-               if (cs->dopart) {
-                       // a loop
-                       if (cs->condpart && cs->condpart->type == Xbinode &&
-                           cast(binode, cs->condpart)->op == Block) {
-                               if (bracket)
-                                       do_indent(indent, "while {\n");
-                               else
-                                       do_indent(indent, "while:\n");
-                               print_exec(cs->condpart, indent+1, bracket);
-                               if (bracket)
-                                       do_indent(indent, "} do {\n");
-                               else
-                                       do_indent(indent, "do:\n");
-                               print_exec(cs->dopart, indent+1, bracket);
-                               if (bracket)
-                                       do_indent(indent, "}\n");
-                       } else {
-                               do_indent(indent, "while ");
-                               print_exec(cs->condpart, 0, bracket);
-                               if (bracket)
-                                       printf(" {\n");
-                               else
-                                       printf(":\n");
-                               print_exec(cs->dopart, indent+1, bracket);
-                               if (bracket)
-                                       do_indent(indent, "}\n");
-                       }
+               if (cs->looppart) {
+                       print_exec(cs->looppart, indent, bracket);
                } else {
                        // a condition
                        if (cs->casepart)
@@ -3743,12 +5197,12 @@ defined.
                                if (bracket)
                                        printf(" {\n");
                                else
-                                       printf(":\n");
+                                       printf("\n");
                                print_exec(cs->condpart, indent+1, bracket);
                                if (bracket)
                                        do_indent(indent, "}\n");
                                if (cs->thenpart) {
-                                       do_indent(indent, "then:\n");
+                                       do_indent(indent, "then\n");
                                        print_exec(cs->thenpart, indent+1, bracket);
                                }
                        } else {
@@ -3782,7 +5236,7 @@ defined.
                        if (bracket)
                                printf(" {\n");
                        else
-                               printf(":\n");
+                               printf("\n");
                        print_exec(cs->elsepart, indent+1, bracket);
                        if (bracket)
                                do_indent(indent, "}\n");
@@ -3790,11 +5244,18 @@ defined.
                break;
        }
 
+###### propagate binode cases
+       case Loop:
+               t = propagate_types(b->right, c, perr, Tnone, 0);
+               if (!type_compat(Tnone, t, 0))
+                       *perr |= Efail; // UNTESTED
+               return propagate_types(b->left, c, perr, type, rules);
+
 ###### propagate exec cases
        case Xcond_statement:
        {
-               // forpart and dopart must return Tnone
-               // thenpart must return Tnone if there is a dopart,
+               // forpart and looppart->right must return Tnone
+               // thenpart must return Tnone if there is a loopart,
                // otherwise it is like elsepart.
                // condpart must:
                //    be bool if there is no casepart
@@ -3806,98 +5267,105 @@ defined.
                struct cond_statement *cs = cast(cond_statement, prog);
                struct casepart *cp;
 
-               t = propagate_types(cs->forpart, c, ok, Tnone, 0);
-               if (!type_compat(Tnone, t, 0))
-                       *ok = 0;
-               t = propagate_types(cs->dopart, c, ok, Tnone, 0);
+               t = propagate_types(cs->forpart, c, perr, Tnone, 0);
                if (!type_compat(Tnone, t, 0))
-                       *ok = 0;
-               if (cs->dopart) {
-                       t = propagate_types(cs->thenpart, c, ok, Tnone, 0);
+                       *perr |= Efail; // UNTESTED
+
+               if (cs->looppart) {
+                       t = propagate_types(cs->thenpart, c, perr, Tnone, 0);
                        if (!type_compat(Tnone, t, 0))
-                               *ok = 0;
+                               *perr |= Efail; // UNTESTED
                }
-               if (cs->casepart == NULL)
-                       propagate_types(cs->condpart, c, ok, Tbool, 0);
-               else {
+               if (cs->casepart == NULL) {
+                       propagate_types(cs->condpart, c, perr, Tbool, 0);
+                       propagate_types(cs->looppart, c, perr, Tbool, 0);
+               } else {
                        /* Condpart must match case values, with bool permitted */
                        t = NULL;
                        for (cp = cs->casepart;
                             cp && !t; cp = cp->next)
-                               t = propagate_types(cp->value, c, ok, NULL, 0);
+                               t = propagate_types(cp->value, c, perr, NULL, 0);
                        if (!t && cs->condpart)
-                               t = propagate_types(cs->condpart, c, ok, NULL, Rboolok);
+                               t = propagate_types(cs->condpart, c, perr, NULL, Rboolok);      // UNTESTED
+                       if (!t && cs->looppart)
+                               t = propagate_types(cs->looppart, c, perr, NULL, Rboolok);      // UNTESTED
                        // Now we have a type (I hope) push it down
                        if (t) {
                                for (cp = cs->casepart; cp; cp = cp->next)
-                                       propagate_types(cp->value, c, ok, t, 0);
-                               propagate_types(cs->condpart, c, ok, t, Rboolok);
+                                       propagate_types(cp->value, c, perr, t, 0);
+                               propagate_types(cs->condpart, c, perr, t, Rboolok);
+                               propagate_types(cs->looppart, c, perr, t, Rboolok);
                        }
                }
                // (if)then, else, and case parts must return expected type.
-               if (!cs->dopart && !type)
-                       type = propagate_types(cs->thenpart, c, ok, NULL, rules);
+               if (!cs->looppart && !type)
+                       type = propagate_types(cs->thenpart, c, perr, NULL, rules);
                if (!type)
-                       type = propagate_types(cs->elsepart, c, ok, NULL, rules);
+                       type = propagate_types(cs->elsepart, c, perr, NULL, rules);
                for (cp = cs->casepart;
                     cp && !type;
-                    cp = cp->next)
-                       type = propagate_types(cp->action, c, ok, NULL, rules);
+                    cp = cp->next)     // UNTESTED
+                       type = propagate_types(cp->action, c, perr, NULL, rules);       // UNTESTED
                if (type) {
-                       if (!cs->dopart)
-                               propagate_types(cs->thenpart, c, ok, type, rules);
-                       propagate_types(cs->elsepart, c, ok, type, rules);
+                       if (!cs->looppart)
+                               propagate_types(cs->thenpart, c, perr, type, rules);
+                       propagate_types(cs->elsepart, c, perr, type, rules);
                        for (cp = cs->casepart; cp ; cp = cp->next)
-                               propagate_types(cp->action, c, ok, type, rules);
+                               propagate_types(cp->action, c, perr, type, rules);
                        return type;
                } else
                        return NULL;
        }
 
+###### interp binode cases
+       case Loop:
+               // This just performs one iterration of the loop
+               rv = interp_exec(c, b->left, &rvtype);
+               if (rvtype == Tnone ||
+                   (rvtype == Tbool && rv.bool != 0))
+                       // rvtype is Tnone or Tbool, doesn't need to be freed
+                       interp_exec(c, b->right, NULL);
+               break;
+
 ###### interp exec cases
        case Xcond_statement:
        {
                struct value v, cnd;
+               struct type *vtype, *cndtype;
                struct casepart *cp;
-               struct cond_statement *c = cast(cond_statement, e);
+               struct cond_statement *cs = cast(cond_statement, e);
 
-               if (c->forpart)
-                       interp_exec(c->forpart);
-               do {
-                       if (c->condpart)
-                               cnd = interp_exec(c->condpart);
-                       else
-                               cnd.type = Tnone;
-                       if (!(cnd.type == Tnone ||
-                             (cnd.type == Tbool && cnd.bool != 0)))
-                               break;
-                       // cnd is Tnone or Tbool, doesn't need to be freed
-                       if (c->dopart)
-                               interp_exec(c->dopart);
-
-                       if (c->thenpart) {
-                               rv = interp_exec(c->thenpart);
-                               if (rv.type != Tnone || !c->dopart)
-                                       goto Xcond_done;
-                               free_value(rv);
+               if (cs->forpart)
+                       interp_exec(c, cs->forpart, NULL);
+               if (cs->looppart) {
+                       while ((cnd = interp_exec(c, cs->looppart, &cndtype)),
+                              cndtype == Tnone || (cndtype == Tbool && cnd.bool != 0))
+                               interp_exec(c, cs->thenpart, NULL);
+               } else {
+                       cnd = interp_exec(c, cs->condpart, &cndtype);
+                       if ((cndtype == Tnone ||
+                           (cndtype == Tbool && cnd.bool != 0))) {
+                               // cnd is Tnone or Tbool, doesn't need to be freed
+                               rv = interp_exec(c, cs->thenpart, &rvtype);
+                               // skip else (and cases)
+                               goto Xcond_done;
                        }
-               } while (c->dopart);
-
-               for (cp = c->casepart; cp; cp = cp->next) {
-                       v = interp_exec(cp->value);
-                       if (value_cmp(v, cnd) == 0) {
-                               free_value(v);
-                               free_value(cnd);
-                               rv = interp_exec(cp->action);
+               }
+               for (cp = cs->casepart; cp; cp = cp->next) {
+                       v = interp_exec(c, cp->value, &vtype);
+                       if (value_cmp(cndtype, vtype, &v, &cnd) == 0) {
+                               free_value(vtype, &v);
+                               free_value(cndtype, &cnd);
+                               rv = interp_exec(c, cp->action, &rvtype);
                                goto Xcond_done;
                        }
-                       free_value(v);
+                       free_value(vtype, &v);
                }
-               free_value(cnd);
-               if (c->elsepart)
-                       rv = interp_exec(c->elsepart);
+               free_value(cndtype, &cnd);
+               if (cs->elsepart)
+                       rv = interp_exec(c, cs->elsepart, &rvtype);
                else
-                       rv.type = Tnone;
+                       rvtype = Tnone;
        Xcond_done:
                break;
        }
@@ -3911,8 +5379,8 @@ At the top level of a file there will be a number of declarations.
 Many of the things that can be declared haven't been described yet,
 such as functions, procedures, imports, and probably more.
 For now there are two sorts of things that can appear at the top
-level.  They are predefined constants, `struct` types, and the main
-program.  While the syntax will allow the main program to appear
+level.  They are predefined constants, `struct` types, and the `main`
+function.  While the syntax will allow the `main` function to appear
 multiple times, that will trigger an error if it is actually attempted.
 
 The various declarations do not return anything.  They store the
@@ -3921,31 +5389,42 @@ various declarations in the parse context.
 ###### Parser: grammar
 
        $void
-       Ocean -> DeclarationList
+       Ocean -> OptNL DeclarationList
+
+       ## declare terminals
+
+       OptNL ->
+       | OptNL NEWLINE
+
+       Newlines -> NEWLINE
+       | Newlines NEWLINE
 
        DeclarationList -> Declaration
-               | DeclarationList Declaration
+       | DeclarationList Declaration
 
-       Declaration -> DeclareConstant
-               | DeclareProgram
-               | DeclareStruct
-               | NEWLINE
-               | ERROR NEWLINE ${
-                       tok_err(c,
-                               "error: unhandled parse error", &$1);
-               }$
+       Declaration -> ERROR Newlines ${
+               tok_err(c,      // UNTESTED
+                       "error: unhandled parse error", &$1);
+       }$
+       | DeclareConstant
+       | DeclareFunction
+       | DeclareStruct
 
        ## top level grammar
 
+       ## Grammar
+
 ### The `const` section
 
-As well as being defined in with the code that uses them, constants
-can be declared at the top level.  These have full-file scope, so they
-are always `InScope`.  The value of a top level constant can be given
-as an expression, and this is evaluated immediately rather than in the
-later interpretation stage.  Once we add functions to the language, we
-will need rules concern which, if any, can be used to define a top
-level constant.
+As well as being defined in with the code that uses them, constants can
+be declared at the top level.  These have full-file scope, so they are
+always `InScope`, even before(!) they have been declared.  The value of
+a top level constant can be given as an expression, and this is
+evaluated after parsing and before execution.
+
+A function call can be used to evaluate a constant, but it will not have
+access to any program state, once such statement becomes meaningful.
+e.g.  arguments and filesystem will not be visible.
 
 Constants are defined in a section that starts with the reserved word
 `const` and then has a block with a list of assignment statements.
@@ -3954,62 +5433,263 @@ make it clear that they are constants.  Type can also be given: if
 not, the type will be determined during analysis, as with other
 constants.
 
-As the types constants are inserted at the head of a list, printing
-them in the same order that they were read is not straight forward.
-We take a quadratic approach here and count the number of constants
-(variables of depth 0), then count down from there, each time
-searching through for the Nth constant for decreasing N.
+###### parse context
+       struct binode *constlist;
 
 ###### top level grammar
 
-       DeclareConstant -> const Open ConstList Close
-               | const Open SimpleConstList }
-               | const : ConstList
-               | const SimpleConstList NEWLINE
+       $TERM const
+
+       DeclareConstant -> const { IN OptNL ConstList OUT OptNL } Newlines
+       | const { SimpleConstList } Newlines
+       | const IN OptNL ConstList OUT Newlines
+       | const SimpleConstList Newlines
+
+       ConstList -> ConstList SimpleConstLine
+       | SimpleConstLine
 
-       ConstList -> ComplexConsts
-               | NEWLINE ConstList
-       ComplexConsts -> ComplexConst ComplexConsts
-               | ComplexConst
-       ComplexConst -> SimpleConstList NEWLINE
        SimpleConstList -> SimpleConstList ; Const
-               | Const
-               | SimpleConstList ;
+       | Const
+       | SimpleConstList ;
+
+       SimpleConstLine -> SimpleConstList Newlines
+       | ERROR Newlines ${ tok_err(c, "Syntax error in constant", &$1); }$
 
        $*type
        CType -> Type   ${ $0 = $<1; }$
-               |       ${ $0 = NULL; }$
+       |               ${ $0 = NULL; }$
+
        $void
        Const -> IDENTIFIER :: CType = Expression ${ {
-               int ok;
                struct variable *v;
+               struct binode *bl, *bv;
+               struct var *var = new_pos(var, $ID);
 
-               v = var_decl(c, $1.txt);
+               v = var_decl(c, $ID.txt);
                if (v) {
-                       struct var *var = new_pos(var, $1);
                        v->where_decl = var;
                        v->where_set = var;
-                       var->var = v;
+                       v->type = $<CT;
                        v->constant = 1;
+                       v->global = 1;
                } else {
                        v = var_ref(c, $1.txt);
-                       tok_err(c, "error: name already declared", &$1);
-                       type_err(c, "info: this is where '%v' was first declared",
-                                v->where_decl, NULL, 0, NULL);
-               }
-               do {
-                       ok = 1;
-                       propagate_types($5, c, &ok, $3, 0);
-               } while (ok == 2);
-               if (!ok)
-                       c->parse_error = 1;
-               else if (v) {
-                       v->val = interp_exec($5);
+                       if (v->type == Tnone) {
+                               v->where_decl = var;
+                               v->where_set = var;
+                               v->type = $<CT;
+                               v->constant = 1;
+                               v->global = 1;
+                       } else {
+                               tok_err(c, "error: name already declared", &$1);
+                               type_err(c, "info: this is where '%v' was first declared",
+                                        v->where_decl, NULL, 0, NULL);
+                       }
                }
+               var->var = v;
+
+               bv = new(binode);
+               bv->op = Declare;
+               bv->left = var;
+               bv->right= $<Exp;
+
+               bl = new(binode);
+               bl->op = List;
+               bl->left = c->constlist;
+               bl->right = bv;
+               c->constlist = bl;
        } }$
-       | ERROR NEWLINE ${ tok_err(c, "Syntax error in constant", &$1); }$
+
+###### core functions
+       static void resolve_consts(struct parse_context *c)
+       {
+               struct binode *b;
+               int retry = 1;
+               enum { none, some, cannot } progress = none;
+
+               c->constlist = reorder_bilist(c->constlist);
+               while (retry) {
+                       retry = 0;
+                       for (b = cast(binode, c->constlist); b;
+                            b = cast(binode, b->right)) {
+                               enum prop_err perr;
+                               struct binode *vb = cast(binode, b->left);
+                               struct var *v = cast(var, vb->left);
+                               if (v->var->frame_pos >= 0)
+                                       continue;
+                               do {
+                                       perr = 0;
+                                       propagate_types(vb->right, c, &perr,
+                                                       v->var->type, 0);
+                               } while (perr & Eretry);
+                               if (perr & Efail)
+                                       c->parse_error += 1;
+                               else if (!(perr & Eruntime)) {
+                                       progress = some;
+                                       struct value res = interp_exec(
+                                               c, vb->right, &v->var->type);
+                                       global_alloc(c, v->var->type, v->var, &res);
+                               } else {
+                                       if (progress == cannot)
+                                               type_err(c, "error: const %v cannot be resolved.",
+                                                        v, NULL, 0, NULL);
+                                       else
+                                               retry = 1;
+                               }
+                       }
+                       switch (progress) {
+                       case cannot:
+                               retry = 0; break;
+                       case none:
+                               progress = cannot; break;
+                       case some:
+                               progress = none; break;
+                       }
+               }
+       }
 
 ###### print const decls
+       {
+               struct binode *b;
+               int first = 1;
+
+               for (b = cast(binode, context.constlist); b;
+                    b = cast(binode, b->right)) {
+                       struct binode *vb = cast(binode, b->left);
+                       struct var *vr = cast(var, vb->left);
+                       struct variable *v = vr->var;
+
+                       if (first)
+                               printf("const\n");
+                       first = 0;
+
+                       printf("    %.*s :: ", v->name->name.len, v->name->name.txt);
+                       type_print(v->type, stdout);
+                       printf(" = ");
+                       print_exec(vb->right, -1, 0);
+                       printf("\n");
+               }
+       }
+
+###### free const decls
+       free_binode(context.constlist);
+
+### Function declarations
+
+The code in an Ocean program is all stored in function declarations.
+One of the functions must be named `main` and it must accept an array of
+strings as a parameter - the command line arguments.
+
+As this is the top level, several things are handled a bit differently.
+The function is not interpreted by `interp_exec` as that isn't passed
+the argument list which the program requires.  Similarly type analysis
+is a bit more interesting at this level.
+
+###### ast functions
+
+       static struct type *handle_results(struct parse_context *c,
+                                          struct binode *results)
+       {
+               /* Create a 'struct' type from the results list, which
+                * is a list for 'struct var'
+                */
+               struct type *t = add_anon_type(c, &structure_prototype,
+                                              "function result");
+               int cnt = 0;
+               struct binode *b;
+
+               for (b = results; b; b = cast(binode, b->right))
+                       cnt += 1;
+               t->structure.nfields = cnt;
+               t->structure.fields = calloc(cnt, sizeof(struct field));
+               cnt = 0;
+               for (b = results; b; b = cast(binode, b->right)) {
+                       struct var *v = cast(var, b->left);
+                       struct field *f = &t->structure.fields[cnt++];
+                       int a = v->var->type->align;
+                       f->name = v->var->name->name;
+                       f->type = v->var->type;
+                       f->init = NULL;
+                       f->offset = t->size;
+                       v->var->frame_pos = f->offset;
+                       t->size += ((f->type->size - 1) | (a-1)) + 1;
+                       if (a > t->align)
+                               t->align = a;
+                       variable_unlink_exec(v->var);
+               }
+               free_binode(results);
+               return t;
+       }
+
+       static struct variable *declare_function(struct parse_context *c,
+                                               struct variable *name,
+                                               struct binode *args,
+                                               struct type *ret,
+                                               struct binode *results,
+                                               struct exec *code)
+       {
+               if (name) {
+                       struct value fn = {.function = code};
+                       struct type *t;
+                       var_block_close(c, CloseFunction, code);
+                       t = add_anon_type(c, &function_prototype, 
+                                         "func %.*s", name->name->name.len, 
+                                         name->name->name.txt);
+                       name->type = t;
+                       t->function.params = reorder_bilist(args);
+                       if (!ret) {
+                               ret = handle_results(c, reorder_bilist(results));
+                               t->function.inline_result = 1;
+                               t->function.local_size = ret->size;
+                       }
+                       t->function.return_type = ret;
+                       global_alloc(c, t, name, &fn);
+                       name->type->function.scope = c->out_scope;
+               } else {
+                       free_binode(args);
+                       free_type(ret);
+                       free_exec(code);
+                       var_block_close(c, CloseFunction, NULL);
+               }
+               c->out_scope = NULL;
+               return name;
+       }
+
+###### declare terminals
+       $TERM return
+
+###### top level grammar
+
+       $*variable
+       DeclareFunction -> func FuncName ( OpenScope ArgsLine ) Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, Tnone, NULL, $<Bl);
+       }$
+       | func FuncName IN OpenScope Args OUT OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, Tnone, NULL, $<Bl);
+       }$
+       | func FuncName NEWLINE OpenScope OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, NULL, Tnone, NULL, $<Bl);
+       }$
+       | func FuncName ( OpenScope ArgsLine ) : Type Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, $<Ty, NULL, $<Bl);
+       }$
+       | func FuncName ( OpenScope ArgsLine ) : ( ArgsLine ) Block Newlines ${
+               $0 = declare_function(c, $<FN, $<AL, NULL, $<AL2, $<Bl);
+       }$
+       | func FuncName IN OpenScope Args OUT OptNL return Type Newlines do Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, $<Ty, NULL, $<Bl);
+       }$
+       | func FuncName NEWLINE OpenScope return Type Newlines do Block Newlines ${
+               $0 = declare_function(c, $<FN, NULL, $<Ty, NULL, $<Bl);
+       }$
+       | func FuncName IN OpenScope Args OUT OptNL return IN Args OUT OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, $<Ar, NULL, $<Ar2, $<Bl);
+       }$
+       | func FuncName NEWLINE OpenScope return IN Args OUT OptNL do Block Newlines ${
+               $0 = declare_function(c, $<FN, NULL, NULL, $<Ar, $<Bl);
+       }$
+
+###### print func decls
        {
                struct variable *v;
                int target = -1;
@@ -4017,174 +5697,156 @@ searching through for the Nth constant for decreasing N.
                while (target != 0) {
                        int i = 0;
                        for (v = context.in_scope; v; v=v->in_scope)
-                               if (v->depth == 0) {
+                               if (v->depth == 0 && v->type && v->type->check_args) {
                                        i += 1;
                                        if (i == target)
                                                break;
                                }
 
                        if (target == -1) {
-                               if (i)
-                                       printf("const:\n");
                                target = i;
                        } else {
-                               printf("    %.*s :: ", v->name->name.len, v->name->name.txt);
-                               type_print(v->val.type, stdout);
-                               printf(" = ");
-                               if (v->val.type == Tstr)
-                                       printf("\"");
-                               print_value(v->val);
-                               if (v->val.type == Tstr)
-                                       printf("\"");
-                               printf("\n");
+                               struct value *val = var_value(&context, v);
+                               printf("func %.*s", v->name->name.len, v->name->name.txt);
+                               v->type->print_type_decl(v->type, stdout);
+                               if (brackets)
+                                       print_exec(val->function, 0, brackets);
+                               else
+                                       print_value(v->type, val, stdout);
+                               printf("/* frame size %d */\n", v->type->function.local_size);
                                target -= 1;
                        }
                }
        }
 
-### Finally the whole program.
-
-Somewhat reminiscent of Pascal a (current) Ocean program starts with
-the keyword "program" and a list of variable names which are assigned
-values from command line arguments.  Following this is a `block` which
-is the code to execute.  Unlike Pascal, constants and other
-declarations come *before* the program.
-
-As this is the top level, several things are handled a bit
-differently.
-The whole program is not interpreted by `interp_exec` as that isn't
-passed the argument list which the program requires.  Similarly type
-analysis is a bit more interesting at this level.
-
-###### Binode types
-       Program,
-
-###### top level grammar
-
-       DeclareProgram -> Program ${ {
-               if (c->prog)
-                       type_err(c, "Program defined a second time",
-                                $1, NULL, 0, NULL);
-               else
-                       c->prog = $<1;
-       } }$
-
-       $*binode
-       Program -> program OpenScope Varlist Block ${
-               $0 = new(binode);
-               $0->op = Program;
-               $0->left = reorder_bilist($<3);
-               $0->right = $<4;
-               var_block_close(c, CloseSequential);
-               if (c->scope_stack && !c->parse_error) abort();
-               }$
-               | ERROR ${
-                       tok_err(c,
-                               "error: unhandled parse error", &$1);
-               }$
-
-       Varlist -> Varlist ArgDecl ${
-                       $0 = new(binode);
-                       $0->op = Program;
-                       $0->left = $<1;
-                       $0->right = $<2;
-               }$
-               | ${ $0 = NULL; }$
-
-       $*var
-       ArgDecl -> IDENTIFIER ${ {
-               struct variable *v = var_decl(c, $1.txt);
-               $0 = new(var);
-               $0->var = v;
-       } }$
-
-       ## Grammar
-
-###### print binode cases
-       case Program:
-               do_indent(indent, "program");
-               for (b2 = cast(binode, b->left); b2; b2 = cast(binode, b2->right)) {
-                       printf(" ");
-                       print_exec(b2->left, 0, 0);
-               }
-               if (bracket)
-                       printf(" {\n");
-               else
-                       printf(":\n");
-               print_exec(b->right, indent+1, bracket);
-               if (bracket)
-                       do_indent(indent, "}\n");
-               break;
-
-###### propagate binode cases
-       case Program: abort();          // NOTEST
-
 ###### core functions
 
-       static int analyse_prog(struct exec *prog, struct parse_context *c)
+       static int analyse_funcs(struct parse_context *c)
        {
-               struct binode *b = cast(binode, prog);
-               int ok = 1;
+               struct variable *v;
+               int all_ok = 1;
+               for (v = c->in_scope; v; v = v->in_scope) {
+                       struct value *val;
+                       struct type *ret;
+                       enum prop_err perr;
+                       if (v->depth != 0 || !v->type || !v->type->check_args)
+                               continue;
+                       ret = v->type->function.inline_result ?
+                               Tnone : v->type->function.return_type;
+                       val = var_value(c, v);
+                       do {
+                               perr = 0;
+                               propagate_types(val->function, c, &perr, ret, 0);
+                       } while (!(perr & Efail) && (perr & Eretry));
+                       if (!(perr & Efail))
+                               /* Make sure everything is still consistent */
+                               propagate_types(val->function, c, &perr, ret, 0);
+                       if (perr & Efail)
+                               all_ok = 0;
+                       if (!v->type->function.inline_result &&
+                           !v->type->function.return_type->dup) {
+                               type_err(c, "error: function cannot return value of type %1", 
+                                        v->where_decl, v->type->function.return_type, 0, NULL);
+                       }
 
-               if (!b)
-                       return 0;       // NOTEST
-               do {
-                       ok = 1;
-                       propagate_types(b->right, c, &ok, Tnone, 0);
-               } while (ok == 2);
-               if (!ok)
-                       return 0;
+                       scope_finalize(c, v->type);
+               }
+               return all_ok;
+       }
 
-               for (b = cast(binode, b->left); b; b = cast(binode, b->right)) {
-                       struct var *v = cast(var, b->left);
-                       if (!v->var->val.type) {
-                               v->var->where_set = b;
-                               v->var->val = val_prepare(Tstr);
+       static int analyse_main(struct type *type, struct parse_context *c)
+       {
+               struct binode *bp = type->function.params;
+               struct binode *b;
+               enum prop_err perr;
+               int arg = 0;
+               struct type *argv_type;
+
+               argv_type = add_anon_type(c, &array_prototype, "argv");
+               argv_type->array.member = Tstr;
+               argv_type->array.unspec = 1;
+
+               for (b = bp; b; b = cast(binode, b->right)) {
+                       perr = 0;
+                       switch (arg++) {
+                       case 0: /* argv */
+                               propagate_types(b->left, c, &perr, argv_type, 0);
+                               break;
+                       default: /* invalid */  // NOTEST
+                               propagate_types(b->left, c, &perr, Tnone, 0);   // NOTEST
                        }
+                       if (perr & Efail)
+                               c->parse_error += 1;
                }
-               b = cast(binode, prog);
-               do {
-                       ok = 1;
-                       propagate_types(b->right, c, &ok, Tnone, 0);
-               } while (ok == 2);
-               if (!ok)
-                       return 0;
 
-               /* Make sure everything is still consistent */
-               propagate_types(b->right, c, &ok, Tnone, 0);
-               return !!ok;
+               return !c->parse_error;
        }
 
-       static void interp_prog(struct exec *prog, char **argv)
+       static void interp_main(struct parse_context *c, int argc, char **argv)
        {
-               struct binode *p = cast(binode, prog);
+               struct value *progp = NULL;
+               struct text main_name = { "main", 4 };
+               struct variable *mainv;
                struct binode *al;
+               int anum = 0;
                struct value v;
+               struct type *vtype;
+
+               mainv = var_ref(c, main_name);
+               if (mainv)
+                       progp = var_value(c, mainv);
+               if (!progp || !progp->function) {
+                       fprintf(stderr, "oceani: no main function found.\n");
+                       c->parse_error += 1;
+                       return;
+               }
+               if (!analyse_main(mainv->type, c)) {
+                       fprintf(stderr, "oceani: main has wrong type.\n");
+                       c->parse_error += 1;
+                       return;
+               }
+               al = mainv->type->function.params;
 
-               if (!prog)
-                       return;         // NOTEST
-               al = cast(binode, p->left);
+               c->local_size = mainv->type->function.local_size;
+               c->local = calloc(1, c->local_size);
                while (al) {
                        struct var *v = cast(var, al->left);
-                       struct value *vl = &v->var->val;
-
-                       if (argv[0] == NULL) {
-                               printf("Not enough args\n");
-                               exit(1);
+                       struct value *vl = var_value(c, v->var);
+                       struct value arg;
+                       struct type *t;
+                       mpq_t argcq;
+                       int i;
+
+                       switch (anum++) {
+                       case 0: /* argv */
+                               t = v->var->type;
+                               mpq_init(argcq);
+                               mpq_set_ui(argcq, argc, 1);
+                               memcpy(var_value(c, t->array.vsize), &argcq, sizeof(argcq));
+                               t->prepare_type(c, t, 0);
+                               array_init(v->var->type, vl);
+                               for (i = 0; i < argc; i++) {
+                                       struct value *vl2 = vl->array + i * v->var->type->array.member->size;
+
+                                       arg.str.txt = argv[i];
+                                       arg.str.len = strlen(argv[i]);
+                                       free_value(Tstr, vl2);
+                                       dup_value(Tstr, &arg, vl2);
+                               }
+                               break;
                        }
                        al = cast(binode, al->right);
-                       free_value(*vl);
-                       *vl = parse_value(vl->type, argv[0]);
-                       if (vl->type == NULL)
-                               exit(1);
-                       argv++;
                }
-               v = interp_exec(p->right);
-               free_value(v);
+               v = interp_exec(c, progp->function, &vtype);
+               free_value(vtype, &v);
+               free(c->local);
+               c->local = NULL;
        }
 
-###### interp binode cases
-       case Program: abort();  // NOTEST
+###### ast functions
+       void free_variable(struct variable *v)
+       {
+       }
 
 ## And now to test it out.
 
@@ -4202,29 +5864,31 @@ things which will likely grow as the languages grows.
 
 ###### demo: hello
 
-       const:
+       const
                pi ::= 3.141_592_6
                four ::= 2 + 2 ; five ::= 10/2
        const pie ::= "I like Pie";
                cake ::= "The cake is"
                  ++ " a lie"
 
-       struct fred:
+       struct fred
                size:[four]number
                name:string
                alive:Boolean
 
-       program A B:
+       func main(argv:[argc::]string)
                print "Hello World, what lovely oceans you have!"
                print "Are there", five, "?"
                print pi, pie, "but", cake
 
+               A := $argv[1]; B := $argv[2]
+
                /* When a variable is defined in both branches of an 'if',
                 * and used afterwards, the variables are merged.
                 */
                if A > B:
                        bigger := "yes"
-               else:
+               else
                        bigger := "no"
                print "Is", A, "bigger than", B,"? ", bigger
                /* If a variable is not used after the 'if', no
@@ -4233,7 +5897,7 @@ things which will likely grow as the languages grows.
                if A > B * 2:
                        double:string = "yes"
                        print A, "is more than twice", B, "?", double
-               else:
+               else
                        double := B*2
                        print "double", B, "is", double
 
@@ -4244,15 +5908,15 @@ things which will likely grow as the languages grows.
                        while a != b:
                                if a < b:
                                        b = b - a
-                               else:
+                               else
                                        a = a - b
                        print "GCD of", A, "and", B,"is", a
                else if a <= 0:
                        print a, "is not positive, cannot calculate GCD"
-               else:
+               else
                        print b, "is not positive, cannot calculate GCD"
 
-               for:
+               for
                        togo := 10
                        f1 := 1; f2 := 1
                        print "Fibonacci:", f1,f2,
@@ -4265,25 +5929,26 @@ things which will likely grow as the languages grows.
                print ""
 
                /* Binary search... */
-               for:
+               for
                        lo:= 0; hi := 100
                        target := 77
-               while:
+               while
                        mid := (lo + hi) / 2
                        if mid == target:
-                               use Found
+                               use .Found
                        if mid < target:
                                lo = mid
-                       else:
+                       else
                                hi = mid
                        if hi - lo < 1:
-                               use GiveUp
+                               lo = mid
+                               use .GiveUp
                        use True
-               do: pass
-               case Found:
+               do pass
+               case .Found:
                        print "Yay, I found", target
-               case GiveUp:
-                       print "Closest I found was", mid
+               case .GiveUp:
+                       print "Closest I found was", lo
 
                size::= 10
                list:[size]number
@@ -4310,6 +5975,8 @@ things which will likely grow as the languages grows.
                        print "", list[i],
                print
 
+               if 1 == 2 then print "yes"; else print "no"
+
                bob:fred
                bob.name = "Hello"
                bob.alive = (bob.name == "Hello")